
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Automatic Completion of
Distributed Protocols with Symmetry?

Rajeev Alur1, Mukund Raghothaman1,
Christos Stergiou1,2, Stavros Tripakis2,3, and Abhishek Udupa1

1 University of Pennsylvania, Philadelphia, USA
2 University of California, Berkeley, USA

3 Aalto University, Helsinki, Finland

Abstract. A distributed protocol is typically modeled as a set of com-
municating processes, where each process is described as an extended
state machine along with fairness assumptions. Correctness is specified
using safety and liveness requirements. Designing correct distributed pro-
tocols is a challenging task. Aimed at simplifying this task, we allow the
designer to leave some of the guards and updates to state variables in the
description of the protocol as unknown functions. The protocol comple-
tion problem then is to find interpretations for these unknown functions
while guaranteeing correctness. In many distributed protocols, process
behaviors are naturally symmetric, and thus, synthesized expressions
are further required to obey symmetry constraints. Our counterexample-
guided synthesis algorithm consists of repeatedly invoking two phases.
In the first phase, candidates for unknown expressions are generated
using the SMT solver Z3. This phase requires carefully orchestrating
constraints to enforce the desired symmetry constraints. In the second
phase, the resulting completed protocol is checked for correctness using a
custom-built model checker that handles fairness assumptions, safety and
liveness requirements, and exploits symmetry. When model checking fails,
our tool examines a set of counterexamples to safety/liveness properties
to generate constraints on unknown functions that must be satisfied by
subsequent completions. For evaluation, we show that our prototype is
able to automatically discover interesting missing details in distributed
protocols for mutual exclusion, self stabilization, and cache coherence.

1 Introduction

Protocols for coordination among concurrent processes are an essential component
of modern multiprocessor and distributed systems. The multitude of behaviors
arising due to asynchrony and concurrency makes the design of such protocols
difficult. Consequently, analyzing such protocols has been a central theme of
? This research was partially supported by NSF Expeditions award CCF 1138996 and
by NSF award #1329759. The authors also acknowledge support from the Academy
of Finland and the iCyPhy Research Center (Industrial Cyber-Physical Systems,
supported by IBM and United Technologies).

research in formal verification for decades. Now that verification tools are mature
enough to be applied to find bugs in real-world protocols, a promising area of
research is protocol synthesis, aimed at simplifying the design process via more
intuitive programming abstractions to specify the desired behavior.

Traditionally, a distributed protocol is modeled as a set of communicating
processes, where each process is described by an extended state machine. The
correctness is specified by both safety and liveness requirements. In reactive syn-
thesis [26,24,5], the goal is to automatically derive a protocol from its correctness
requirements specified in temporal logic. However, if we require the implementa-
tion to be distributed, then reactive synthesis is undecidable [25,20,31,13]. An
alternative, and potentially more feasible approach inspired by program sketch-
ing [28], is to ask the programmer to specify the protocol as a set of communicating
state machines, but allow some of the guards and updates to state variables to
be unknown functions, to be completed by the synthesizer so as to satisfy all
the correctness requirements. This methodology for protocol specification can be
viewed as a fruitful collaboration between the designer and the synthesis tool:
the programmer has to describe the structure of the desired protocol, but some
details that the programmer is unsure about, for instance, regarding corner cases
and handling of unexpected messages, will be filled in automatically by the tool.

In our formalization of the synthesis problem, processes communicate using
input/output channels that carry typed messages. Each process is described
by a state machine with a set of typed state variables. Transitions consist of
(1) guards that test input messages and state variables and, (2) updates to
state variables and fields of messages to be sent. Such guards and updates can
involve unknown (typed) functions to be filled in by the synthesizer. In many
distributed protocols, such as cache coherence protocols, processes are expected
to behave in a symmetric manner. Thus, we allow variables to have symmetric
types that restrict the read/write accesses to obey symmetry constraints. To
specify safety and liveness requirements, the state machines can be augmented
with acceptance conditions that capture incorrect executions. Finally, fairness
assumptions are added to restrict incorrect executions to those that are fair.
It is worth noting that in verification one can get useful analysis results by
focusing solely on safety requirements. In synthesis, however, ignoring liveness
requirements and fairness assumptions, typically results in trivial solutions. The
protocol completion problem, then, is, given a set of extended state machines
with unknown guards and update functions, to find expressions for the unknown
functions so that the composition of the resulting machines does not have an
accepting fair execution.

Our synthesis algorithm relies on a counterexample-guided strategy with two
interacting phases: candidate interpretations for unknown functions are generated
using the SMT solver Z3 and the resulting completed protocol is verified using a
model checker. We believe that our realization of this strategy leads to the follow-
ing contributions. First, while searching for candidate interpretations for unknown
functions, we need to generate constraints that enforce symmetry in an accurate
manner without choking current SMT solvers. Second, surprisingly there is no
publicly available model checker that handles all the features that we critically

need, namely, symmetry, liveness requirements, and fairness assumptions. So, we
had to develop our own model checker, building on the known theoretical foun-
dations. Third, we develop an algorithm that examines the counterexamples to
safety/liveness requirements when model checking fails, and generates constraints
on unknown functions that must be satisfied in subsequent completions. Finally,
the huge search space for candidate expressions is a challenge for the scalability
for any synthesis approach. As reported in Section 5, we experimented with many
alternative strategies for prioritizing the search for candidate expressions, and
this experience offers some insights regarding what information a user can provide
for getting useful results from the synthesis tool. We evaluate our synthesis tool
in completing a mutual exclusion protocol, a self stabilization protocol and a
non-trivial cache coherence protocol. Large parts of the behavior of the protocol
were left unspecified in the case of the mutual exclusion protocol and the self
stabilization protocol, whereas the cache coherence protocol had quite a few
tricky details left unspecified. Our tool synthesized the correct completions for
these protocols in a reasonable amount of time.
Related Work. Bounded synthesis [14] and genetic programming [18,19] are
other approaches for handling the undecidability of distributed reactive synthesis.
In the first, the size of the implementation is restricted, and in the second the
implementation space is sampled and candidates are mutated in a stochastic
process. The problem of inferring extended finite-state machines has been studied
in the context of active learning [6]. The problem of completing distributed pro-
tocols has been targeted by the works presented in [2,32] and program repair [17]
addresses a similar problem. Compared to [2], our algorithm can handle extended
state machines that include variables and transitions with symbolic expressions
as guards and updates. Compared to [32], our algorithm can also handle liveness
violations and, more importantly, can process counterexamples automatically.
PSKETCH [29] is an extension of the program sketching work for concurrent
data structures but is limited to safety properties. The work in [15] describes
an approach based on QBF solvers for synthesizing a distributed self-stabilizing
system, which also approximates liveness with safety and uses templates for
the synthesized functions. Also, compared to all works mentioned above, our
algorithm can be used to enforce symmetry in the synthesized processes.

2 An Illustrative Example

Consider Peterson’s mutual exclusion algorithm, described in Figure 1a, which
manages two symmetric processes contending for access to a critical section. Each
process is parameterized by Pm and Po (for “my” process id and “other” process
id respectively), such that Pm 6= Po. Both parameters Pm and Po are of type
processid and they are allowed to take on values P0 and P1. We therefore have
two instances: P0, where (Pm = P0, Po = P1), and P1, where (Pm = P1, Po = P0).
P0 and P1 communicate through the shared variables turn and flag. The variable
turn has type processid. The flag variable is an array of Boolean values, with
index type processid. The objective of the protocol is to control access to the

L1 L2 L3

L4

Critical section

requestPm!
flag[Pm] := true turn := Po

flag[Po] ∧ turn = Po
waitingPm!

¬flag[Po] ∨ turn = Pm
criticalPm!

flag[Pm] := false

(a) Parameterized Symmetric Process

L1 L2 L3

L4

Critical section

requestPm!
flag[Pm] := true turn := Po

gwait(Pm, Po, flag, turn)
waitingPm!

gcrit(Pm, Po,flag, turn)
criticalPm!

flag[Pm] := false

(b) Incomplete process sketch

Fig. 1: Peterson’s mutual exclusion algorithm. The non-trivial guards of the (L3, L3)
and (L3, L4) transitions in Figure 1(a) have been replaced in Figure 1(b) by “unknown”
functions gwait and gcrit respectively.

critical section, represented by location L4, and ensure that both of the processes
P0 and P1 are never simultaneously in the critical section.

M1 M2 M3

waitingid?
requestid?
criticalid?

requestid?

waitingid?
requestid?

criticalid?

waitingid?
requestid?
criticalid?

Fig. 2: Liveness Monitor

The liveness monitor shown in Figure 2 cap-
tures the requirement that a process does not
wait indefinitely to enter the critical section. The
monitor accepts all undesirable runs where a pro-
cess has requested access to the critical section
but never reaches state L4 after. The messages
request, waiting, and critical inform the liveness
monitor about the state of the processes, and
the synchronization model here is that of com-
municating I/O automata [21]. Note that a run accepted by the monitor may be
unfair with respect to some processes. Enforcing weak process fairness on P0 and
P1 is sufficient to rule out unfair executions, but not necessary. Enforcing weak
fairness on the transitions between (L2, L3), (L3, L4) and (L4, L1) suffices.

Now, suppose the protocol developer has trouble figuring out the exact
condition under which a process is allowed to enter the critical section, but knows
the structure of the processes P0 and P1, and requires them to be symmetric.
Figure 1b describes what the developer knows about the protocol. The functions
gwait and gcrit represent unknown Boolean valued functions over the state variables
and the parameters of the process under consideration. Including the parameters
as part of the domain of gwait and gcrit indicates that the completions for processes
P0 and P1 need to be symmetric. The objective is to assist the developer by
automatically discovering interpretations for these unknown functions, such that
the completed protocol satisfies the necessary mutual exclusion property, and
the requirements imposed by the liveness monitor. We formalize this completion
problem in Section 3, and present our completion algorithm in Section 4.

3 Formalization
3.1 Extended State Machine Sketches
We model processes using Extended State Machine Sketches (esm-s). Fix a
collection of types, such as the type bool of the Boolean values {true, false},

enumerated types such as {red, green, blue}, or finite subsets nat[x, y] of natural
numbers {i | x ≤ i ≤ y}. Other examples include symmetric types (described in
Section 3.2), array and record types. Note that each type is required to be finite.

The description of an esm-s will mention several function symbols. Some of
these have interpretations which are already known, while others have unknown
interpretations. Each function symbol, both known and unknown, is associated
with a signature, d1 × · · · × dn → r, where d1, . . . , dn are the types of its
arguments and r is the return type. Expressions may then be constructed using
these function symbols, state variables, and input channels. Formally, an esm-s
A is a tuple 〈L, l0, I, O, S, σ0, U, T,Fs,Fw〉 such that:
– L is a finite set of locations and l0 ∈ L is the initial location,
– I and O are finite sets of typed input and output channels, respectively,
– S is a finite set of typed state variables,
– σ0 maps each variable x ∈ S to its initial value σ0(x),
– U is a set of unknown function symbols,
– T is a set of transitions of the form 〈l, c, guard, updates, l′〉, where c ∈ I,
c ∈ O and c = ε for input, output and internal transitions respectively. The
transition is guarded by the expression guard and updates are the updates to
state variables,

– Fs,Fw ⊆ 2Tε∪TO , are sets of strong and weak fairnesses respectively. Here
TO and Tε are the sets of output and internal transitions respectively.

A guard description guard is a Boolean expression over the state variables S that
can use unknown functions from U . Similarly, an update description updates is
a sequence of assignments of the form lhs := rhs where lhs is one of the state
variables or an output channel in the case of an output transition, and rhs is an
expression over state variables or state variables and an input channel in the case
of an input transition, possibly using unknown functions from U .
Executions. To define the executions of an esm-s, we first pick an interpretation
R which maps each unknown function u ∈ U to an interpretation of u. Given a
set of variables V , a valuation σ is a function which maps each variable x ∈ V to
a value σ(x) of the corresponding type, and we write ΣV for the set of all such
valuations. Given a valuation σ ∈ ΣV , a variable x, and a value v of appropriate
type, we write σ[x 7→ v] ∈ ΣV ∪{x} for the valuation which maps all variables
y 6= x to σ(y), and maps x to v.

The executions of A are defined by describing the updates to the state
valuation σ ∈ ΣS during each transition. Note that each guard description guard
naturally defines a set Jguard, RK of valuations σ ∈ ΣS which satisfy guard with
the unknown functions instantiated with R. Similarly, each update description
updates defines a function Jupdates, RK of type ΣS∪{x} → ΣS for input transitions
on the channel x, ΣS → ΣS∪{y} for output transitions on the channel y, and
ΣS → ΣS for internal transitions respectively. A state of an esm-s A is a pair
(l, σ) where, l ∈ L and σ ∈ ΣS . We then write:
– (l, σ) x?v−−→ (l′, σ′) if A has an input transition from l to l′ on channel
x with guard guard and update updates such that σ ∈ Jguard, RK and
Jupdates, RK(σ[x 7→ v]) = σ′;

– (l, σ) y!v−−→ (l′, σ′) if A has an output transition from l to l′ on channel
y with guard guard and update updates such that σ ∈ Jguard, RK and
Jupdates, RK(σ) = σ′[y 7→ v]; and

– (l, σ) ε−→ (l′, σ′) if A has an internal transition from l to l′ with guard guard
and update guard such that σ ∈ Jguard, RK and Jupdates, RK(σ) = σ′.

We write (l, σ) → (l′, σ′) if either there are x, v such that (l, σ) x?v−−→ (l′, σ′),
there are y, v such that (l, σ) y!v−−→ (l′, σ′), or (l, σ) ε−→ (l′, σ′). A finite (infinite)
execution of the esm-s A under R is then a finite (resp. infinite) sequence:
(l0, σ0) → (l1, σ1) → (l2, σ2) → · · · where for every j ≥ 0, (lj , σj) is a state of
A, (l0, σ0) is an initial state of A, and for j ≥ 1, (lj , σj)→ (lj+1, σj+1). A state
(l, σ) is reachable under R if there exists a finite execution that reaches that state:
(l0, σ0)→ · · · → (l, σ). We say that a transition from l to l′ with guard guard is
enabled in state (l, σ) if σ ∈ Jguard, RK. A state (l, σ) is called a deadlock if no
transition is enabled in (l, σ). The esm-s A is called deadlock-free under R if no
deadlock state is reachable under R. The esm-s A is called deterministic under
R if for every state (l, σ), if there are multiple transitions enabled at (l, σ), then
they must be input transitions on distinct input channels.

Consider a weak fairness requirement F ∈ Fw. An infinite execution of A
under R is called fair with respect to a weak fairness F if either: (a) for infinitely
many indices i, none of the transitions t ∈ F is enabled in (li, σi), or (b) for
infinitely many indices j one of the transitions in F is taken at step j. Thus,
for example, the necessary fairness assumptions for Peterson’s algorithm are
Fw = {{τ23}, {τ34}, {τ41}}, where τ23, τ34, and τ41 refer to the (L2, L3), (L3, L4)
and (L4, L1) transitions respectively. Similarly, an infinite execution of A under
R is fair with respect to a strong fairness F ∈ Fs if either: (a) there exists k
such that for every i ≥ k and every transition t ∈ F , t is not enabled in (li, σi),
or (b) for infinitely many indices j one of the transitions in F is taken at step j.
Finally, an infinite execution of A is fair if it is fair with respect to each strong
and weak fairness requirement in Fs and Fw respectively.
Composition of ESM sketches. For lack of space, we only provide an informal
definition of composition of esm-s here. A formal definition can be found in the
full version of this paper [3]. Informally, two esm-s A1 and A2 are composed by
synchronizing their output and input transitions on a given channel. If A1 has
an output transition on channel c from location l1 to l′1 with guard and updates
guard1 and updates1, and A2 has an input transition on the same channel c from
location l2 to l′2 with guard and updates guard2 and updates2 then their product
has an output transition from location (l1, l2) to (l′1, l′2) on channel c with guard
guard1 ∧ guard2 and updates updates1; updates2. Note that by sequencing the
updates, the value written to the channel c by A1 is then used by subsequent
updates of the variables of A2 in updates2.
Specifications. An esm-s can be equipped with error locations Le ⊆ L, accept-
ing locations La ⊆ L, or both. The composition of two esm-s A1, A2 “inherits”
the error and accepting locations of its components. A product location (l1, l2) is
an error (accepting) location if either l1 or l2 are error (accepting) locations. An
esm-s A is called safe under R if for all reachable states (l, σ), l is not an error

location. An infinite execution of A under R, (l0, σ0)→ (l1, σ1)→ · · · , is called
accepting if for infinitely many indices j, lj ∈ La. A is called live under R if it
has no infinite fair accepting executions.

3.2 Symmetry

It is often required that the processes of an esm-s completion problem have some
structurally similar behavior, as we saw in Section 2 in the case of Peterson’s
algorithm. To describe such requirements, we use symmetric types, which are
similar to scalarsets used in the Murϕ model checker [23].

A symmetric type T is characterized by: (a) its name, and (b) its cardinality
|T |, which is a finite number. Given a collection of processes parameterized by a
symmetric type T , such as P0 and P1 of Peterson’s algorithm, the idea is that the
system is invariant under permutations (i.e. renaming) of the parameter values.
Let perm(T) be the set of all permutations πT : T → T over the symmetric type
T . For ease of notation, we define πT (v) = v, for values v whose type is not T .
Given the collection of all symmetric types T = {T1, T2, . . . , Tn} of the system,
we can then describe permutations over T as the composition of permutations
over the individual types, πT1 ◦ πT2 ◦ · · · ◦ πTn . Let perm(T) be the set of such
“system-wide” permutations over T .

ESM sketches and input and output channels may thus be parameterized by
symmetric values. The state variables and array variable indices of an esm-s may
also be of symmetric type. Given the symmetric types T and an interpretation
R of the unknown functions in an esm-s A, we say that A is symmetric with
respect to T if every execution (l0, σ0) → (l1, σ1) → · · · → (ln, σn) → · · · of A
under R also implies the existence of the permuted execution (π(l0), π(σ0))→
(π(l1), π(σ0))→ · · · (π(ln), π(σn))→ · · · of A, where the channel identifiers along
transitions are also suitably permuted, for every permutation π ∈ perm(T).

We therefore require that any interpretation R considered be such that
the completed esm-s A is symmetric with respect to T under R. For every
unknown function f in A, requiring that ∀d ∈ dom(f), π(f(d)) = f(π(d))), for
each permutation π ∈ perm(T), ensures that the behavior of f is symmetric. In
Section 4, we will describe how these additional constraints are presented to the
SMT solver. Note that while we have only discussed full symmetry here, other
notions of symmetry such as ring symmetry and virtual symmetry [11] can also
be accommodated in our formalization.

3.3 Completion Problem

In many cases, the designer has some prior knowledge about the unknown
functions used in an esm-s. For example, the designer may know that the
variable turn is read-only during the (L3, L4) transition of Peterson’s algorithm.
The designer may also know that the unknown guard of a transition is independent
of some state variable. Many instances of such “prior knowledge” can already be
expressed using the formalism just described: the update expression of turn in the
unknown transition can be set to the identity function (in the first case), and the

Add input,
determinism, and

symmetry constraints

Solve constraints:
Produce model for
unknown functions

Instantiate protocol
with interpretation

esm-s
A1, A2, . . . , AN

Constraints Φ0
on unknown functions

SAT?
Model check
protocol

Environment
esm-s E

Errors?

Correct
InterpretationSyGuS SolverSymbolic Expressions

Analyze errors &
update constraints

No completion

No?

Yes?

Yes?
Interpretation
for unknown
functions

No?

Fig. 3: Completion Algorithm.

designer can omit the irrelevant variable from the signature of the update function
(in the second case). We also allow the designer to specify additional constraints on
the unknown functions: she may know, as in the case of Peterson’s algorithm for
example, that gcrit(Pm, Po,flag, turn)∨ gwait(Pm, Po,flag, turn), for every valuation
of the function arguments Pm, Po, flag, and turn. This additional knowledge,
which is helpful to guide the synthesizer, is encoded in the initial constraints Φ0
imposed on candidate interpretations of U . Note that these constraints might
refer to multiple unknown functions from the same or different esm-s.

Formally, we can now state the completion problem as: Given a set of esm-s
A1, . . . AN with sets of unknown functions U1, . . . , UN , an environment esm-s
E with an empty set of unknown functions, and a set of constraints Φ0 on
the unknown functions U = U1 ∪ · · · ∪ UN , find an interpretation R of U ,
such that (a) A1, . . . , AN are deterministic under R, (b) the completed system
Π = A1 | · · · | AN | E is symmetric with respect to T under R, where T is the
set of symmetric types in the system, (c) R satisfies the constraints in Φ0, and
(d) the product Π under R is deadlock-free, safe, and live.

4 Solving the Completion Problem
The synthesis algorithm is outlined in Figure 3. We maintain a set of constraints Φ
on possible completions, and repeatedly query Z3 [22] for candidate interpretations
satisfying all constraints in Φ. If the interpretation is certified correct by the
model checker, we are done. Otherwise, counter-example executions returned by
the model checker are analyzed, and Φ is strengthened with further constraints
which eliminate all subsequent interpretations with similar erroneous executions.
If a symbolic expression is required, we can submit the correct interpretation to
a SyGuS solver [1]. A SyGuS solver takes a set of constraints C on an unknown
function f together with the search space for the body of f — expressed as a
grammar — and finds an expression in the grammar for f , such that it satisfies
the constraints C. In this section, we first describe the initial determinism and
symmetry constraints expected of all completions. Next, we briefly describe the

model checker used in our implementation, and then describe how to analyze
counterexamples returned by the model checker. Finally, we describe additional
heuristics to bias the SMT solver towards intuitively simpler completions first.

4.1 Initial Constraints

Determinism Constraints. Recall that an esm-s is deterministic under an
interpretation R if and only if for every state (l, σ) if there are multiple tran-
sitions enabled at (l, σ), then they must be input transitions on distinct input
channels. We constrain the interpretations chosen at every step such that all
esm-s in the protocol are deterministic. Consider the esm-s for Peterson’s al-
gorithm shown in Figure 1b. We have two transitions from the location L3,
with guards gcrit(Pm, Po,flag, turn) and gwait(Pm, Po,flag, turn). We ensure that
these expressions never evaluate to true simultaneously with the constraint
¬∃v1v2v3v4 (gcrit(v1, v2, v3, v4) ∧ gwait(v1, v2, v3, v4)). Although this is a quanti-
fied expression, which can be difficult for SMT solvers to solve, note that we only
support finite types, whose domains are often quite small. So our tool unrolls the
quantifiers and presents only quantifier-free formulas to the SMT solver.
Symmetry Constraints. Suppose that the interpretation chosen for the
guard gcrit shown in Figure 1b, was such that gcrit(P0, P1, 〈⊥,>〉, P0) = true.
Then for the esm-s to be symmetric under this interpretation, we require that
gcrit(P1, P0, 〈>,⊥〉, P1 = true as well, because the latter expression is obtained
by applying the permutation {P0 7→ P1, P1 7→ P0} on the former expression. Note
that the elements of the flag array in the preceding example were flipped, because
flag is an array indexed by the symmetric type processid. In general, given a
function f ∈ Ui, we enforce the constraint ∀π ∈ perm(T)∀d ∈ dom(f)(f(π(d)) ≡
π(f(d))), where T is the set of symmetric types that appear in Ai. As in the
case of determinism constraints, we unroll the quantifiers here as well.

4.2 Model Checker

To effectively and repeatedly generate constraints to drive the synthesis loop, a
model checker needs to: (a) support checking liveness properties, with algorithmic
support for fine grained notions of strong and weak fairness, (b) dynamically
prioritize certain paths over others (cf. Section 4.4), and (c) exploit symmetries
inherent in the model. The fine grained notions of fairness over sets of transitions,
rather than bulk process fairness are crucial. For instance, in the case of unordered
channel processes, we often require that no message be delayed indefinitely, which
cannot be captured by enforcing fairness at the level of the entire process. The
ability to prioritize certain paths over others is also crucial so that candidate
interpretations are exercised to the extent possible in one model checking run (cf.
Section 4.4). Finally, support for symmetry-based state space reductions, while
not absolutely crucial, can greatly speed up each model checking run.

Surprisingly, we found that none of the well-supported model checkers met
all of our requirements. Spin [16] only supports weak process fairness at an
algorithmic level and does not employ symmetry-based reductions. Support for

symmetry-based reductions is present in Murϕ [23,10], but it lacks support
for liveness checking. SMC [27] is a model checker with support for symmetry
reduction and strong and weak process fairness. Unfortunately, it is no longer
maintained, and has very rudimentary counterexample generation capabilities.
Finally, NuSMV [8] does not support symmetry reductions, but supports strong
and weak process level fairness. But bugs in the implementation of counterexample
generation, left us unable to obtain counterexamples in some cases.

We therefore implemented a model checker based on the ideas used in
Murϕ [10] for symmetry reduction, and an adaptation of the techniques presented
in earlier literature [12] for checking liveness properties under fairness assumptions.
The model checking algorithm consists of the following steps: (1) construct the
symmetry-reduced state graph, (2) find accepting strongly connected components
(SCCs) in the reduced state graph, (3) delete unfair states from each SCC; repeat
steps (2) and (3) until either a fair SCC is found or no more accepting SCCs
remain. A more detailed description of the model checking algorithm is presented
in the full version of the paper [3].

4.3 Analysis of Counterexamples
We now describe our algorithms for analyzing counterexamples by way of examples.
A more formal description of the algorithms can be found in the full version of
this paper [3].
Analyzing deadlocks. In Figure 1b, consider the candidate interpretation
where both gcrit, gwait are set to be universally false. Two deadlock states
are then reachable: S1 = ((L3, L3), {flag 7→ 〈>,>〉, turn 7→ P1} and S2 =
((L3, L3), {flag 7→ 〈>,>〉, turn 7→ P0}. We strengthen Φ by asserting that these
deadlocks do not occur in future interpretations: either S1 is unreachable, or the
system can make a transition from S1 (and similarly for S2). In this example,
the reachability of both deadlock states is not dependent on the interpreta-
tion, i.e., the execution that leads to the states does not exercise any unknown
function, hence, we need to make sure that the states are not deadlocks. The
possible transitions out of location (L3, L3) are the transitions from L3 to L3
(waiting transition) and from L3 to L4 (critical transition) for each of the two
processes. In each deadlock state, at least one of the four guards has to be
true: gwait(P0, P1, 〈>,>〉, P1)∨gcrit(P0, P1, 〈>,>〉, P1)∨gwait(P1, P0, 〈>,>〉, P1)∨
gcrit(P1, P0, 〈>,>〉, P1) for S1, and gwait(P0, P1, 〈>,>〉, P0) ∨ gcrit(P0, P1, 〈>,>〉,
P0) ∨ gwait(P1, P0, 〈>,>〉, P0) ∨ gcrit(P1, P0, 〈>,>〉, P0) for S2. The two disjuncts
are added to the set of constraints, since any candidate interpretation has to
satisfy them in order for the resulting product to be deadlock-free.
Analyzing safety violations. Consider now an erroneous interpretation where
the critical transition guards are true for both processes when turn is P0, that
is: gcrit(P0, P1, 〈>,>〉, P0) and gcrit(P1, P0, 〈>,>〉, P0) are set to true. Under this
interpretation the product can reach the error location (L4, L4). We perform
a weakest precondition analysis on the corresponding execution to obtain a
necessary condition under which the safety violation is possible. In this case,
the execution crosses both critical transitions and the generated constraint

is ¬gcrit(P0, P1, 〈>,>〉, P0) ∨ ¬gcrit(P1, P0, 〈>,>〉, P0). Note that the conditions
obtained from this analysis are necessary; the product under any interpretation
that does not satisfy them will exhibit the same safety violation.
Analyzing liveness violations. An interpretation that satisfies the constraints
gathered above is one that, when turn is P0, enables both waiting transitions
and disables the critical ones. Intuitively, under this interpretation, the two
processes will not make progress if turn is P0 when they reach L3. The ex-
ecutions in which the processes are at L3 and either P0 or P1 continuously
take the waiting transition is an accepting one. As with safety violations, we
eliminate liveness violations by adding constraints generated through weak-
est precondition analysis of the accepting executions. In this case, this re-
sults in two constraints: ¬gwait(P0, P1, 〈>,>〉, P0) and ¬gwait(P1, P0, 〈>,>〉, P0).
However, in the presence of fairness assumptions, these constraints are too
strong. This is because removing an execution that causes a fair liveness vi-
olation is not the only way to resolve it: another way is to make it unfair.
Given the weak fairness assumption on the transitions on the criticalPi chan-
nels, the correct constraint generated for the liveness violation of Process P0
is: ¬gwait(P0, P1, 〈>,>〉, P0)∨ gcrit(P0, P1, 〈>,>〉, P0)∨ gcrit(P1, P0, true, true, P0),
where the last two disjuncts render the accepting execution unfair.

4.4 Optimizations and Heuristics.
We describe a few key optimizations and heuristics that improve the scalability
and predictability of our technique.
Not all counterexamples are created equal. The constraint we get from
a single counter-example trace is weaker when it exercises a large number of
unknown functions. Consider, for example, a candidate interpretation for the
incomplete Peterson’s algorithm which, when turn = P0, sets both waiting
transition guards gwait to true, and both critical transition guards gcrit to false.
We have already seen that the product is not live under this interpretation. From
the infinite execution leading up-to the location (L3, L3), and after which P0 loops
in L3, we obtain the constraint ¬gwait(P0, P1, 〈>,>〉, P0). On the other hand, if
we had considered the longer self-loop at (L3, L3), where P0 and P1 alternate
in making waiting transitions, we would have obtained the weaker constraint
¬gwait(P0, P1, 〈>,>〉, P0)∨¬gwait(P1, P0, 〈>,>〉, P0). In general, erroneous traces
which exercise fewer unknown functions have the potential to prune away a larger
fraction of the search space and are therefore preferable over traces exercising a
larger number of unknown functions.

In each iteration, the model checker discovers several erroneous states. In the
event that the candidate interpretation chosen is blatantly incorrect, it is infeasible
to analyze paths to all error states. A naïve solution would be to analyze paths
to the first n errors states discovered (where n is configurable). But depending
on the strategy used to explore the state space, a large fraction these errors could
be similar, and would only provide us with rather weak constraints. On the other
hand, exercising as many unknown functions as possible, along different paths,
has the potential to provide stronger constraints on future interpretations. In

summary, we bias the model checker to cover as many unknown functions as
possible, such that each path exercises as few unknown functions as possible.
Heuristics/Prioritizations to guide the SMT solver. As mentioned earlier,
we use an SMT solver to obtain interpretations for unknown functions, given
a set of constraints. When this set is small, as is the case at the beginning of
the algorithm, there exist many satisfying interpretations. At this point the
interpretation chosen by the SMT solver can either lead the rest of the search
down a “good” path, or lead it down a futile path. Therefore the run time of the
synthesis algorithm can depend heavily on the interpretations returned by the
SMT solver, which we consider a non-deterministic black box in our approach.

To reduce the influence of non-determinism of the SMT solver on the run
time of our algorithm, we bias the solver towards specific forms of interpretations
by asserting additional constraints. These constraints associate a cost with
interpretations and require an interpretation with a given bound on the cost,
which is relaxed whenever the SMT solver fails to find a solution.

We briefly describe the most important of the heuristics/prioritization tech-
niques: (1) We minimize the number of points in the domain of an unknown
guard function at which it evaluates to true. This results in minimally permissive
guards. (2) Based on the observation that most variables are unchanged in a given
transition, we prioritize interpretations where update functions leave the value of
the variable unchanged, as far as possible. (3) We can also try to minimize the
number of arguments on which the value of an unknown function depends.

5 Experiments
5.1 Peterson’s Mutual Exclusion Protocol
In addition to the missing guards ggrit and gwait, we also replace the update
expressions of flag[Pm] in the (L1, L2) and (L4, L1) transitions with unknown func-
tions that depend on all state variables. In the initial constraints we require that
gcrit(Pm, Po,flag, turn) ∨ gwait(Pm, Po,flag, turn). The synthesis algorithm returns
with an interpretation in less than a second. Upon submitting the interpretation
to a SyGuS solver, the synthesized expressions match the ones shown in Figure 1b.

5.2 Self-stabilizing Systems
Our next case study is the synthesis of self-stabilizing systems [9]. A distributed
system is self-stabilizing if, starting from an arbitrary initial state, in each
execution, the system eventually reaches a global legitimate state, and only
legitimate states are ever visited after. We also require that every legitimate state
be reachable from every other legitimate state. Consider N processes connected in
a line. Each process maintains two Boolean state variables x and up. The processes
are described using guarded commands of the form, “if guard then update”.
Whether a command is enabled is a function of the variable values x and up of the
process itself, and those of its neighbors. We attempted to synthesize the guards
and updates for the middle two processes of a four process system P1, P2, P3, P4.
Specifically, the esm-s for P2 and P3 have two transitions, each with an unknown

function as a guard and two unknown functions for updating its state variables.
The guard is a function of xi−1, xi, xi+1, upi−1, upi, upi+1, and the updates of xi
and upi are functions of xi and upi. We followed the definition in [15] and defined
a state as being legitimate if exactly one guarded command is enabled globally.
We also constrain the completions of P2 and P3 to be identical.

Due to the large number of unknown functions needed to be synthesized in this
experiment and, in particular, because there were a lot of input domain points at
which the guards had to be true, the heuristic that prefers minimally permissive
guards, described in Section 4, was not effective. However, the heuristic that
prioritizes interpretations in which the guards depend on fewer arguments of their
domain was effective. For state variable updates, we applied the heuristic that
prioritizes functions that leave the state unchanged or set it to a constant. After
passing the synthesized interpretation through a SyGuS solver, the expressions
we got were exactly the same as the ones found in [9].

5.3 Cache Coherence Protocol

A cache coherence protocol ensures that the copies of shared data in the private
caches of a multiprocessor system are kept up-to-date with the most recent
version. We describe the working of the German cache coherence protocol, which
is often used as a case study in model checking research [7,30]. The protocol
consists of a Directory process, n symmetric Cache processes and n symmetric
Environment processes, one for each cache process. Each cache may be in the E, S
or I state, indicating read-write, read, and no permissions on the data respectively.
All communication between the caches and the directory is non-blocking, and
occurs over buffered, unordered communication channels.

The environment issues read and write commands to its cache. In response to
a read command, the cache C sends a RequestS command to the directory. The
directory, sends C the most up-to-date copy of the data, after coordinating with
other caches, and grants read access to C, and remembers C as a sharer of the
data. In response to a write request from the environment, the cache C sends a
RequestE command to the directory. The directory coordinates with every other
cache C ′ that has read or write permissions to revoke their permissions and then
grants C exclusive access to the data, and remembers C as the owner of the data.
The complete German/MSI protocol, modeled as communicating extended state
machines, is fairly complex, with a symmetry-reduced state space of about 20,000
states when instantiated with two cache processes and about 450,000 states when
instantiated with three cache processes.

We consider a more complex variant of the German cache coherence protocol
to evaluate the techniques we have presented so far, which we refer to as Ger-
man/MSI. The main differences from the base German protocol are: (1) Direct
communication between caches is possible in some cases, (2) A cache in the S
state can silently relinquish its permissions, which can cause the directory to have
out-of-date information about the caches which are in the S state. (3) A cache in
the E state can coordinate with the directory to relinquish their permissions. A
complete list of scenarios typically used when describing this protocol is presented

Benchmark # UF Search # States # Iters. SMT Total
Space Time Time

(s) (s)
Peterson 3 236 60 14 0.1 0.13
Dijkstra 6 2192 ~2000 30 27 64
German/MSI-2 16 ~24700 ~20000 (symm. red.) 217 31 298
German/MSI-4 28 ~27614 ~20000 (symm. red.) 419 898 1545
German/MSI-5 34 ~29000 ~20000 (symm. red.) 525 2261 3410

Table 1: Experimental Results

in the full version of the paper [3]. These scenarios however, do not describe the
protocol’s behavior in several cases induced by concurrency.

C1 Dir C2
I S

Shr = {C1}
I

Wr(D) Wr(D)
RequestEIM RequestE

Inv

Req=C2 DataD2C
NumAcks=1

Data
:= D

???

InvAck

Fig. 4: A Racy Scenario

Consider the scenario shown in Figure 4,
where initially, cache C1 is in the I state, in
contrast, the directory records that C1 is in
state S and is a sharer, due to C1 having
silently relinquished its read permissions at
some point in the past. Now, both caches C1
and C2 receive write commands from their
respective environments. Cache C2 sends
a RequestE message to the directory, re-
questing exclusive write permissions. The
directory, under the impression that C1 is
in state S, sends an Inv message to it, informing it that C2 has requested exclusive
access and C1 needs to acknowledge that it has relinquished permissions to C2.
Concurrently, cache C1 sends a RequestE message to the directory requesting
write permissions as well, which gets delayed. Subsequently, the cache C1 receives
an invalidation when it is in the state IM, which cannot happen in the base
German protocol. The correct behavior for the cache in this situation (shown
by dashed arrows), is to send an InvAck message to the cache C2. The guard,
the state variable updates, as well as the location update is what we have left
unspecified in the case of this particular scenario. As part of the evaluation,
we successfully synthesized the behavior of the German/MSI protocol in five
such corner-case scenarios arising from concurrency. A description of the other
corner-case scenarios can be found in the full version of the paper [3].

5.4 Summary of Experimental Results
Table 1 summarizes our experimental findings. All experiments were performed
on a Linux desktop, with an Intel Core i7 CPU running at 3.4 GHz., with 8
GB of memory. The columns show the name of the benchmark, the number of
unknown functions that were synthesized (# UF), the size of the search space for
the unknown functions, the number of states in the complete protocol (# States),
“symm. red.” denotes symmetry reduced state space. The “# Iters.” column shows
the number of algorithm iterations, while the last two columns show the total
amount of time spent in SMT solving and the end-to-end synthesis time.

The “German/MSI-n” rows correspond to the synthesizing the unknown
behavior for the German/MSI protocol, with n out of the five unknown transitions
left unspecified. In each case, we applied the heuristic to obtain minimally
permissive guards and biased the search towards updates which leave the values
of state variables unchanged as far as possible, except in the case of the Dijkstra
benchmark, as mentioned in Section 5.2. Also, note that we ran each benchmark
multiple times with different random seeds to the SMT solver, and report the
worst of the run times in Table 1.
Programmer Assistance. In all cases, the programmer specified the kinds of
messages to handle in the states where the behavior was unknown. For example,
in the case of the German/MSI protocol, the programmer indicated that in the
IM state on the cache, it needs to handle an invalidation from the directory (see
Figure 4). In general, the programmer specified what needs to be handled, but
not the how. This was crucial to getting our approach to scale.
Overhead of Decision Procedures. We observe from Table 1 that for the
longer running benchmarks, the run time is dominated by SMT solving. In all of
these cases, a very large fraction of the constraints asserted into the SMT solver
are constraints to implement heuristics which are specifically aimed at guiding
the SMT solver, and reducing the impact of non-deterministic choices made by
the solver. Specialized decision procedures that handle these constraints at an
algorithmic level [4] can greatly speed up the synthesis procedure.
Synthesizing Symbolic Expressions. The interpretations returned by the
SMT solver are in the form of tables, which specify the output of the unknown
function on specific inputs. We mentioned that if a symbolic expression is required
we can pass this output to a SyGuS solver, which will then return a symbolic
expression. We were able to synthesize compact expressions in all cases using
the enumerative SyGuS solver [1]. Further, although the interpretations are only
guaranteed to be correct for the finite instance of the protocol, the symbolic
expressions generated by the SyGuS solver were parametric. We found that they
were general enough to handle larger instances of protocol.

6 Conclusions

We have presented an algorithm to complete symmetric distributed protocols
specified as esm sketches, such that they satisfy the given safety and liveness
properties. A prototype implementation, which included a custom model checker,
successfully synthesized non-trivial portions of Peterson’s mutual exclusion pro-
tocol, Dijkstra’s self-stabilizing system, and the German/MSI cache coherence
protocol. We show that programmer assistance in the form of what needs to
be handled is crucial to the scalability of the approach. Scalability is currently
limited by the scalability of the SMT solver. As part of future work, we plan
to investigate algorithms that do not depend as heavily on SMT solvers as a
core decision procedure. We are hopeful that such an approach will improve the
scalability of our algorithms.

References

1. Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided Synthesis. In:
FMCAD. pp. 1–17 (2013)

2. Alur, R., Martin, M.M.K., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.:
Synthesizing Finite-State Protocols from Scenarios and Requirements. In: Yahav,
E. (ed.) 10th International Haifa Verification Conference, HVC 2014, Haifa, Israel,
November 18-20, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8855,
pp. 75–91. Springer (2014)

3. Alur, R., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.: Automatic
Completion of Distributed Protocols with Symmetry. CoRR arXiv:1505.04409
(2015), http://arxiv.org/abs/1505.04409

4. Bjorner, N., Phan, A.D.: νZ - Maximal Satisfaction with Z3. In: Kutsia, T., Voronkov,
A. (eds.) SCSS 2014. EPiC Series, vol. 30, pp. 1–9. EasyChair (2014)

5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reac-
tive(1) Designs. J. Comput. Syst. Sci. 78(3) (2012)

6. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning Extended Finite State
Machines. In: Giannakopoulou, D., SalaÃĳn, G. (eds.) Software Engineering and
Formal Methods, Lecture Notes in Computer Science, vol. 8702, pp. 250–264.
Springer International Publishing (2014)

7. Chou, C.T., Mannava, P., Park, S.: A Simple Method for Parameterized Verification
of Cache Coherence Protocols. In: Hu, A., Martin, A. (eds.) Formal Methods in
Computer-Aided Design. Lecture Notes in Computer Science, vol. 3312, pp. 382–398.
Springer Berlin Heidelberg (2004)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An Open-source Tool for Symbolic Model
Checking. In: Computer Aided Verification. Lecture Notes in Computer Science,
vol. 2404, pp. 359–364. Springer Berlin Heidelberg (2002)

9. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Commun.
ACM 17(11), 643–644 (Nov 1974)

10. Dill, D.L.: The Murϕ Verification System. In: Proceedings of the 8th International
Conference on Computer Aided Verification. pp. 390–393. CAV ’96, Springer-Verlag,
London, UK, UK (1996)

11. Emerson, E.A., Havlicek, J.W., Trefler, R.J.: Virtual Symmetry Reduction. In:
Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer
Science (LICS 2000). pp. 121–131 (June 2000)

12. Emerson, E.A., Sistla, A.P.: Utilizing Symmetry when Model-Checking under
Fairness Assumptions: An Automata-Theoretic Approach. ACM Trans. Program.
Lang. Syst. 19(4), 617–638 (1997)

13. Finkbeiner, B., Schewe, S.: Uniform Distributed Synthesis. In: IEEE Symposium
on Logic in Computer Science. pp. 321–330 (2005)

14. Finkbeiner, B., Schewe, S.: Bounded synthesis. Software Tools for Tchnology Trans-
fer 15(5-6), 519–539 (2013)

15. Gascón, A., Tiwari, A.: Synthesis of a Simple Self-stabilizing System. In: Proceedings
3rd Workshop on Synthesis, SYNT 2014, Vienna, Austria, July 23-24, 2014. pp.
5–16 (2014)

16. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(May 1997)

http://arxiv.org/abs/1505.04409

17. Jobstmann, B., Griesmayer, A., Bloem, R.: Program Repair as a Game. In: Com-
puter Aided Verification, 17th International Conference. pp. 226–238. LNCS 3576
(2005)

18. Katz, G., Peled, D.: Model Checking-Based Genetic Programming with an Appli-
cation to Mutual Exclusion. In: Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference. pp. 141–156. LNCS 4963 (2008)

19. Katz, G., Peled, D.: Synthesizing Solutions to the Leader Election Problem Using
Model Checking and Genetic Programming. In: Haifa Verification Conference. pp.
117–132 (2009)

20. Lamouchi, H., Thistle, J.: Effective Control Synthesis for DES Under Partial
Observations. In: 39th IEEE Conference on Decision and Control. pp. 22–28 (2000)

21. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
22. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C., Rehof,

J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer Berlin Heidelberg
(2008)

23. Norris IP, C., Dill, D.: Better Verification through Symmetry. Formal Methods in
System Design 9(1-2), 41–75 (1996)

24. Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: Proceedings of
the 16th ACM Symposium on Principles of Programming Languages (1989)

25. Pnueli, A., Rosner, R.: Distributed Reactive Systems Are Hard to Synthesize. In:
31st Annual Symposium on Foundations of Computer Science. pp. 746–757 (1990)

26. Ramadge, P., Wonham, W.: The Control of Discrete Event Systems. IEEE Trans-
actions on Control Theory 77, 81–98 (1989)

27. Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: A Symmetry-based Model Checker for
Verification of Safety and Liveness Properties. ACM Trans. Softw. Eng. Methodol.
9(2), 133–166 (2000)

28. Solar-Lezama, A., Rabbah, R., Bodik, R., Ebcioglu, K.: Programming by Sketching
for Bit-streaming Programs. In: Proceedings of the 2005 ACM Conference on
Programming Language Design and Implementation (2005)

29. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching Concurrent Data Structures.
In: Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’08 (2008)

30. Talupur, M., Tuttle, M.R.: Going with the Flow: Parameterized Verification Using
Message Flows. In: Cimatti, A., Jones, R.B. (eds.) Formal Methods in Computer-
Aided Design, FMCAD 2008, Portland, Oregon, USA, 17-20 November 2008. pp.
1–8. IEEE (2008)

31. Tripakis, S.: Undecidable Problems of Decentralized Observation and Control on
Regular Languages. Information Processing Letters 90(1), 21–28 (Apr 2004)

32. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M., Alur,
R.: TRANSIT: Specifying Protocols with Concolic Snippets. In: Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 287–296. PLDI ’13 (2013)

	Automatic Completion of Distributed Protocols

