
Synergistic Execution of Stream Programs
on Multicores with Accelerators

Abhishek Udupa† R. Govindarajan†‡ Matthew J. Thazhuthaveetil†‡
† Department of Computer Science and Automation
‡ Supercomputer Education and Research Centre

Indian Institute of Science
{udupa, govind, mjt}@csa.iisc.ernet.in

Abstract
The StreamIt programming model has been proposed to exploit
parallelism in streaming applications on general purpose multi-
core architectures. The StreamIt graphs describe task, data and
pipeline parallelism which can be exploited on accelerators such
as Graphics Processing Units (GPUs) or CellBE which support
abundant parallelism in hardware.

In this paper, we describe a novel method to orchestrate the ex-
ecution of a StreamIt program on a multicore platform equipped
with an accelerator. The proposed approach identifies, using pro-
filing, the relative benefits of executing a task on the superscalar
CPU cores and the accelerator. We formulate the problem of parti-
tioning the work between the CPU cores and the GPU, taking into
account the latencies for data transfers and the required buffer lay-
out transformations associated with the partitioning, as an integrated
Integer Linear Program (ILP) which can then be solved by an ILP
solver. We also propose an efficient heuristic algorithm for the work
partitioning between the CPU and the GPU, which provides solu-
tions which are within 9.05% of the optimal solution on an average
across the benchmark suite. The partitioned tasks are then software
pipelined to execute on the multiple CPU cores and the Streaming
Multiprocessors (SMs) of the GPU. The software pipelining algo-
rithm orchestrates the execution between CPU cores and the GPU
by emitting the code for the CPU and the GPU, and the code for
the required data transfers. Our experiments on a platform with 8
CPU cores and a GeForce 8800 GTS 512 GPU show a geometric
mean speedup of 6.84X with a maximum of 51.96X over a single
threaded CPU execution across the StreamIt benchmarks. This is a
18.9% improvement over a partitioning strategy that maps only the
filters that cannot be executed on the GPU — the filters with state
that is persistent across firings — onto the CPU.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: Distributed Architectures—GPUs; D.1.3 [Programming
Techniques]: Parallel Programming, Distributed Programming;
D.3.2 [Programming Languages]: Data-flow Languages—StreamIt;
D.3.4 [Programming Languages]: Compilers

General Terms Algorithms, Experimentation, Languages, Perfor-
mance

Keywords CUDA, GPU Programming, Software Pipelining, Stream
Programming, Partitioning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-356-3/09/06. . . $5.00

1. Introduction
An interesting development in embedded systems has been the the
emergence of processors integrated with accelerator architectures.
For example, the OMAP 3530 processor from Texas Instruments
combines a TMS320C64x+ DSP core, an ARM Cortex A8 core and
a PowerVR SGX graphics accelerator, along with accelerators for
image, video and audio processing, in order to meet their perfor-
mance criteria. We use the term heterogeneous architecture to re-
fer to a computing system containing multiple processing elements
with different instruction set architectures (ISAs). Systems like the
CellBE [6] and GPUs, which have recently acquired general pur-
pose compute capabilities, when configured with general purpose
multicore platforms are examples of heterogeneous architectures
with tremendous compute power. However, these new heteroge-
neous accelerator architectures are difficult to program using con-
ventional programming models. To address this difficulty, several
new programming frameworks have been proposed. The OpenCL
framework [2] and the CUDA framework [1] from NVIDIA are
some examples. However, these frameworks have a steep learning
curve associated with them, since the programmer must organize
the computation as a set of data parallel kernels.

Stream programming models such as the synchronous data flow
model [19, 20], Stream Flow Graphs [11, 13, 14] and StreamIt [26]
have been proposed to address the difficulty of programming in-
volved in DSP applications. They allow a programmer to express
computation as a hierarchical set of filters connected by FIFO com-
munication channels. This allows DSP and multimedia applications
to be expressed naturally and frees the programmer from orches-
trating the communication between program blocks. Further, these
models expose task, data and pipeline parallelism [8, 12], which
can be exploited in a manner most suited for the target platform
equipped with various accelerators. For example, different StreamIt
backends [8, 12, 18], target the RAW [7] and CellBE accelera-
tors. This support for target-specific optimizing backends, com-
bined with the program parallelism exposed by the StreamIt lan-
guage, allows the programmer to implement DSP algorithms in a
portable fashion on various platforms, without overly sacrificing
performance.

In this work, we focus on compiling StreamIt programs for
multi-core processors equipped with data parallel accelerators such
as a GPU. Specifically, we compile StreamIt programs for execution
across CPU cores and GPUs. Prior work has focused on mapping
general purpose applications only onto the GPU [5, 25, 27]. Brook
for GPUs [5] requires the programmer to structure computations
as a set of kernels that execute on the GPU, while still requiring
the programmer to orchestrate the communication between the ker-
nels. Accelerator [25] takes a different approach and defines a data
structure called the data parallel array. All operations on these data
parallel arrays are offloaded onto the GPU. This requires the pro-
grammer to organize the application using data parallel arrays. The



work by Udupa et. al. [27], focuses on compiling StreamIt appli-
cations again only onto the GPU. The framework does not utilize
the CPU cores for performing computation. The framework also
suffers from a lack of support for StreamIt programs with stateful
filters (described later). Other work [18, 29] has focused on compil-
ing StreamIt applications onto heterogeneous architectures like the
CellBE, again exploiting only the SPEs.

Our work in this paper orchestrates the execution of StreamIt
programs across CPU cores and accelerators, specifically GPUs.
There are several challenges associated. First, the CPU cores and
GPU operate on separate address spaces, requiring explicit DMA
commands from the CPU to transfer data into or out of the GPU ad-
dress space. Second, the communication buffers between StreamIt
filters need to be laid out in a specific fashion as described in [27]
in order to avoid bank conflicts and uncoalesced accesses on the
device. While this layout enables the GPU to efficiently utilize its
memory bandwidth, it causes a large number of cache misses and
increased memory traffic if used as is on the CPU. Thus the buffers
must be transformed into the required layout when they are trans-
ferred between the CPU cores and the GPU. Lastly, the work parti-
tioning between the CPU and the GPU is complicated by the DMA
and buffer transformation latencies along with the fact that the filters
have non-identical execution times on the two devices. This makes
the work partitioning problem unamenable to simple graph parti-
tioning heuristics. We formulate the partitioning problem as an In-
teger Linear Program (ILP) formulation and also propose a heuristic
partitioning algorithm which compares favorably with the optimal
partitions obtained from the solution to the ILP formulation. Once
the task partitioning is done, the tasks are software pipelined, insert-
ing the necessary DMA transfers and buffer layout transformations.

The main contributions of this work are:
• We describe an ILP formulation for optimal work partitioning

between the CPU cores and the GPU that takes the DMA load
and latencies, buffer transformation work and latencies into
account.
• We propose an efficient heuristic partitioning algorithm that

compares well with the optimal solutions provided by the ILP
formulation. The partitioned tasks are then software pipelined
to synergistically execute on the multiple CPU cores and the
SMs of the GPU.
• In the process, we extend and enhance the framework proposed

in [27] to support stateful filters.
• We implement the above mentioned schemes on the StreamIt

compiler toolchain and evaluate the performance of both the
schemes on a multicore with a GPU as an accelerator, demon-
strating a geometric mean speedup of 6.84X, over a set of
StreamIt benchmarks, with a maximum speedup of 50.96X over
a single threaded CPU execution.
The approach proposed in this paper is applicable in general to

other platforms with heterogeneous cores. The rest of the paper is
organized as follows: Section 2 reviews the necessary background.
Section 3 describes our proposed compilation methodology for syn-
ergistic execution, presenting the details of the ILP formulation, the
heuristic algorithm for the work partitioning and the code genera-
tion process. Section 4 reports the performance results obtained by
our scheme. Section 5 discusses related work and Section 6 con-
cludes.

2. Background and Motivating Example
In this section, we provide a brief overview of the NVIDIA GPU ar-
chitecture and the StreamIt programming Language. We then briefly
describe the buffer layout scheme for GPUs proposed in [27]. In
Section 2.4, we provide a motivating example for the problem ad-
dressed in this paper.

2.1 Organization of the NVIDIA GPUs
We now describe the architecture of the GeForce 8800 series of
GPUs [1]. While other NVIDIA models might differ in the amount
of compute and register resources available, the basic architecture
remains the same. This GPU consists of 16 streaming multiproces-
sors (SMs), each of which in turn consists of 8 scalar units (SUs).
Within an SM, the scalar units execute instructions in a lock-step
fashion. The SMs have hardware support for multithreading, and
periodically switch between threads to hide the latency of loads and
stores. The basic schedulable entity is the warp, which is a contigu-
ous group of 32 threads. Any divergence in the execution paths fol-
lowed by threads within a warp causes them to serialize and incurs
a performance penalty. Threads across warps may diverge without
penalty. Each SM has a partitioned register file with 8192 32-bit
registers, and a 16KB shared memory which is accessible by all the
SUs within the same SM and is akin to a software managed cache or
scratchpad memory. All SMs share a constant cache and a texture
cache, which may be accessed by issuing data requests as texture
fetches [1].

The device memory is connected to the SMs by a very wide
(256 – 512 bits depending on the model) bus. The memory bus is
capable of providing a very high bandwidth, provided all accesses
by threads are coalesced. Essentially, a thread with threadid N of
a warp must access an address of the form WarpBaseAddress +
N , with WarpBaseAddress suitably aligned to the size of the
memory bus. With such an access pattern, each thread accesses
successive memory locations and these accesses can be satisfied by
a single wide (coalesced) memory access.

From a programmer’s point of view, each SM executes a block
of threads, which can consist of up to 512 threads. A GPU kernel
call, which is dispatched to the GPU, consists of multiple blocks,
organized as a grid. Each block is executed by exactly one SM,
but an SM could possibly execute multiple blocks simultaneously,
depending on the register and shared memory requirements of the
block. A kernel can be dispatched asynchronously, i.e., the kernel
invocation returns control to the calling thread on the CPU without
waiting for the GPU to complete execution of the kernel. Any DMA
transfer into the GPU or out of the GPU must be initiated by the
CPU thread and can also be asynchronous.

2.2 StreamIt Overview
StreamIt allows programmers to express computation as a set of fil-
ters (also called nodes) connected by communication channels [26].
This is accomplished by a hierarchical composition of the basic
StreamIt constructs: filter, Pipeline, Split-Join and Feedback Loop.
A node in a StreamIt graph may only access its output channels by
the push() method, which writes an element of a specified type
onto the output FIFO. Input channels may be accessed either by the
pop() method, which removes an element and returns it, or by the
peek() method, which only returns the element without removing
it from the FIFO. The push, pop and peek rates of a filter are static
and must be specified by the programmer. By definition, the peek
rate of a filter is greater than or equal to its pop rate. A filter is
allowed to execute subject to its firing rule, which ensures that at
least peek rate elements are available on its input FIFO and enough
space is available on its output FIFO to accommodate at least push
rate elements. An execution of a filter is called a firing of the filter.

Filters can be stateless or stateful. Stateful filters have persistent
state which may be updated at each firing and passed on to the next
firing. This mandates that the firings of stateful filters are strictly
serialized, whereas multiple firings of stateless filter could execute
in parallel as long as the firing rule is satisfied, without affecting
correctness. In other words stateful filters are not data parallel
and thus are unamenable for execution on the GPU and can only
be sensibly executed on the CPU cores. The push and pop rates
of each filter in a StreamIt program can be non-unity and non-



Figure 1. The buffer layout: (a) A layout which causes bank con-
flicts. (b) A layout which avoids all bank conflicts.

Serial (Uncoalesced) Shuffled (Coalesced)
Access (ms) Access (ms)

CPU 14.55 187
GPU 176.6 8.1

Table 1. Execution times with serial (Uncoalesced on the GPU)
and shuffled (Coalesced on the GPU) accesses

identical. A steady state schedule specifies the number of instances
of each filter (also called the firing rate of the filter) that must fire
in one steady state iteration to ensure that repetitive execution of
the steady state iteration does not require infinite storage on any
channel. That is, the production and consumption rates at each FIFO
channel are balanced across a steady state schedule. The number of
instances of each filter can be obtained by solving a set of equations
involving the push and pop rates of the filters, called the steady
state equations [19, 20]. One execution of a steady state schedule is
termed as a steady state iteration.

2.3 Buffer Layout Considerations
As mentioned earlier, accesses to GPU memory must be coalesced
in order to effectively utilize the high memory bandwidth available.
In this work, we use the layout scheme proposed in [27] for the
buffers on the GPU. We only briefly describe the scheme here with
a simple example. Further details can be obtained from [27].

Figure 1 depicts accesses in a simplified architecture with 8
memory banks and 4 threads of execution of a filter with a pop rate
of 4. As can be seen in Figure 1(a), a sequential buffer layout incurs
bank conflicts and results in the conflicting accesses being serial-
ized at every cycle. Figure 1(b) shows how all bank conflicts can be
eliminated by transforming the buffer so that simultaneous accesses
to device memory by the various threads never hit the same bank.
The effect of this on execution time is shown in Table 1, which re-
ports the execution time to initialize 32MB of data on the CPU and
the GPU, using the serial or natural ordering of elements, which re-
sults in uncoalesced accesses and bank conflicts on the GPU, and
using a shuffled ordering, which results in only coalesced accesses
on the GPU, similar to that shown in Figure 1(b). As can be seen,
uncoalesced accesses and bank conflicts cause a huge performance
loss on the GPU, if a serial layout is used and the shuffled layout
causes a similar performance loss on the CPU, due to cache misses
arising from the staggered access pattern. This makes it important to
transform the buffers into the form appropriate for the CPU or the
GPU, depending on where they are used. We term the process of
restoring a shuffled buffer as in Figure 1(b) into a serial ordering as
deshuffling, and the reverse process as shuffling. Formally, the shuf-
fle function, which is derived from [27] with some modifications, is
defined as:

s(i) = b
(⌊

i

ws

⌋
+ (i mod ws)×

(
o× k × nt

ws

))
where o, k, nt and ws are the pop rate of the consumer on the edge
under consideration, the firing rate of the consumer in the steady
state schedule, the number of threads the consumer is executing
with and the warp size of the device respectively; s(i), ∀i ∈
[0, o× k × nt) denotes the value at the ith position in the shuffled
buffer and b(i) denotes the value of the ith element in the natural
FIFO ordering of the buffer.

Assuming that all filters on the GPU are executed with a number
of threads which is a multiple of the warp size ws, the index j of
the nth element popped (pushed) by a thread whose threadid is tid
in the mth instance of the filter, with a pop (push) rate o is:

j = off + ws× n +
⌊

tid

ws

⌋
× ws× o + (tid mod ws), n < o

where off = m × o × nt is the offset for the mth instance of the
filter. The layout scheme described in [27] shuffled the buffers at a
granularity of 128 elements. However, a granularity of 32 elements
is sufficient to ensure that no uncoalesced accesses occur, since the
warp size on the device is 32 threads. We use a granularity of 32
elements here.

2.4 Motivating Example
We now provide an example that serves to highlight the need for a
synergistic partitioning of StreamIt programs across the CPU cores
and the GPU. Consider the simple StreamIt graph shown in Fig-
ure 2(a), which consists of a pipeline with five stages. Assume that
the firing rate of each filter is unity. The execution time of each fil-
ter on the CPU and the GPU, and the latencies for transferring the
required data for each channel is shown in Figure 2. For simplicity,
we assume that the shuffle and deshuffle costs associated with the
edges are zero, although we take them into account in the final for-
mulation. Filter B is a stateful filter which can be executed only on
the CPU. We now need to partition the remaining filters optimally
to achieve the minimum possible lower bound for the Initiation In-
terval (MII) [21] for the software pipelined schedule. We define
MII as MII = max(RecMII, ResMII), where the Resource
Constrained MII, (ResMII) and the Recurrence Constrained MII
(RecMII) are as defined in [21]. In this work, we assume RecMII
to be the delay of the heaviest stateful filter in the stream graph. If
the graph contains one or more feedback loop structures, then each
feedback loop can easily be fused [8] into a stateful filter. Since
stateful filters and feedback loop structures govern RecMII which
cannot be reduced, our approach partitions the remaining filters to
execute on the CPU or the GPU such that the resulting ResMII is
as close to RecMII as possible. Thus, the partitioning strategy tries
to minimize the ResMII, by appropriately partitioning the nodes be-
tween the CPU and the GPU and modeling the DMA channel as a
resource, which also contributes to ResMII .

Figure 2(b) shows the MII if we naı̈vely map filter B on the
CPU and execute all the other filters on the GPU. This partition in-
curs DMA transfer costs from the GPU to the CPU (between filter
A and B) and again from the CPU to the GPU (between filter B and
C). As can be seen, a load imbalance also exists in this case, result-
ing in an MII of 75. Figure 2(c) shows the partitioning obtained if
we try a greedy strategy by moving a filter to the partition (either the
CPU or the GPU), where it is most beneficial to be executed. In this
case, although the load has been well distributed between the CPU
and the GPU, the DMA channel is over utilized, yielding an MII of
70. Finally, the partition depicted in Figure 2(d) achieves the lowest
possible MII of 45 and is optimal. This example demonstrates that
simple heuristics do not work well and that a more intelligent par-
titioning strategy that takes into account the DMA and buffer trans-
formation latencies is called for. Also, graph partitioning heuristics



based on [17] do not help, since the weights of the nodes are not
static and depend on which partition they are assigned to.

Figure 3 shows how we propose to software pipeline the pro-
gram, once the optimal partitioning as in Figure 2(d) is obtained.
Again, for simplicity and clarity, the shuffle and deshuffle opera-
tions that may be required are not shown.

CPU: 10
GPU: 20

CPU: 20

CPU: 80
GPU: 20

CPU: 15
GPU: 10

CPU: 10
GPU: 25

A

B

C

D

E

20

10

10

60

GPU: 20

CPU: 20

GPU: 20

GPU: 10

GPU: 25

A

B

C

D

E

20

10

10

60

CPU: 10

CPU: 20

GPU: 20

GPU: 10

CPU: 10

A

B

C

D

E

20

10

10

60

GPU: 20

CPU: 20

GPU: 20

CPU: 15

CPU: 10

A

B

C

D

E

20

10

10

60

 − Assigned to the GPU  − Assigned to the CPU

(a) (b) (c) (d)

CPU Load: 20
GPU Load: 75
DMA Load: 30
     MII: 75

CPU Load: 40
GPU Load: 30
DMA Load: 70
     MII: 70

CPU Load: 45
GPU Load: 40
DMA Load: 40
     MII: 45

Figure 2. Motivating Example. (a) The original StreamIt graph.
(b) A naı̈ve partitioning. (c) A greedy partitioning. (d) The optimal
partitioning.

Figure 3. The Software Pipelined Kernel for the Partitioning
shown in Figure 2(d). For simplicity, only one CPU core and one
GPU SM is assumed.

3. Synergistic Software Pipelining
3.1 Overview of the Proposed Methodology
Figure 4 depicts the stages of our compilation methodology. First,
the execution times of the filters in the StreamIt program on both
the CPU and the GPU are determined by profile runs. We then use
the algorithm described in [27] to determine the optimal execution
configuration. The execution configuration defines the number of
threads each filter must be executed with on the GPU (if the filter
is partitioned onto the GPU). This step essentially determines the
MII for all feasible combinations of execution configurations for
each filter and selects the combination that yields the least MII.
All filters that execute on the CPU are assumed to execute 128
times at each firing. This is done since we do not want an excessive
number of CPU instances, which would in turn complicate the work
partitioning. Also, 128 is a common factor for all the execution
configurations we consider on the GPU, viz. 128, 256, 384 and
512 threads. Once the optimal execution configuration has been
obtained, we calculate the number of instances of each filter in one
steady state by solving the steady state equations. These steps are

Figure 4. Overview of the compilation trajectory

the same as described in [27]. The next phase is the partitioning. We
adopt a two-step approach to partitioning:
1. We first partition the filters themselves across the GPU and the

CPU cores. This essentially partitions the stream graph into two
sets, one for the GPU and the other for the CPU cores. A filter
(all its instances) executes either on the CPU cores or on the
GPU.1 Stateful nodes and peeking nodes with large working
sets (described later) are fixed to the CPU and are not allowed
to be assigned to the GPU. We refer to this step as filter or task
partitioning.

2. We then partition the instances of each filter across the CPU
cores (if the filter is assigned to the CPU in the first step above),
or across the SMs of the GPU. This helps in achieving fine
grained work distribution across the CPU cores and the SMs.
We refer to this step as instance partitioning.
If the number of instances of every filter in the StreamIt graph

is small, then we may not be able to obtain good performance even
with a good task partition. In this case, we scale up the number of
instances of all the filters in the graph by an integral factor until
there are a sufficiently large number of instances and then proceed
to the instance partitioning step.

Once the partitioning phase is complete, we determine the DMA
transfers and shuffle and deshuffle operations required by the parti-
tion. Table 1 shows that it is beneficial to access data in the shuffled
(leading to coalesced accesses) mode in the GPU and deshuffled
mode on the CPU. Hence, whenever data is transferred from the
CPU to the GPU, it is first DMA’ed into the GPU and a shuffle op-
eration is performed. For the GPU to CPU transfers, a deshuffle is
performed on the GPU before the DMA transfer takes place.2 We
then orchestrate the execution of the filters, the DMA transfers and
the shuffle and deshuffle operations by applying a simple modulo
scheduling scheme described in Section 3.4.

The shuffle and deshuffle operations themselves are always as-
signed to the GPU, since it can perform these operations much faster
than the CPU. We perform these operations without incurring any

1 It is possible to consider the partitioning at the level of filter instances
rather than at the level of entire filters. However, such a formulation leads to
unnecessary complications, since the buffers associated with the filters must
be allocated in both the CPU and GPU address spaces and data transfers
must be handled at the level of filter instances. Also, since the number of
instances of each filter could be in the order of a few tens to a few hundreds,
the ILP formulation and the heuristic partitioner becomes unnecessarily
complex. Hence we restrict our attention in this paper to partitioning only at
the level of filters.
2 There are a few exceptions to this, which we describe in Section 3.2.



bank conflicts at the device memory by staging the shuffle set into
the shared memory of the SMs and incurring all bank conflicts at
the shared memory. These conflicts are 1-cycle conflicts, as com-
pared to device memory conflicts, which take 600 – 800 cycles to
resolve [1], and thus do not cause significant performance losses. To
ensure that all accesses to device memory are coalesced, we must
shuffle (or deshuffle) at least warpsize × warpsize elements at
one go, since this would mean that there are at least warpsize ele-
ments that are contiguous in the serial (shuffled) ordering. Thus, we
define an instance of a shuffle or deshuffle operation to operate on
1024 elements. We also scale the steady state execution counts of
all filters to ensure that the number of elements exchanged on each
buffer in one steady state iteration is a multiple of 1024. These in-
stances form the basic schedulable unit for the shuffle and deshuffle
operations. We partition these instances across the SMs of the GPU
in a manner similar to partitioning the instances of filters (step 2
above). Buffers for the filters assigned to the CPU are laid out in
a deshuffled fashion, while the buffers for the filters executing on
the GPU are laid out in a shuffled fashion, except for the buffers for
peeking filters, i.e., the filters that inspect tokens on their input FIFO
that they do not immediately consume. These filters cannot access
their buffers in a coalesced fashion, since there will always be some
residual elements on their input FIFOs from a previous iteration.
Thus, the input and output buffers for the peeking filters are always
laid out in a sequential (deshuffled) manner. In order to avoid unco-
alesced accesses at the device memory, while executing the peeking
filters we stage the entire working set into shared memory before
beginning execution of such filters. The output is also produced in
a deshuffled fashion and is staged into shared memory to avoid un-
coalesced writes. After the peeking filter has completed execution,
we move the entire output set into device memory using a series of
coalesced writes. This approach works well for peeking filters with
small working sets. If the working set of a peeking filter is too large
to be accommodated in the 16KB of shared memory available, we
fix the filter to execute on the CPU.

3.2 ILP Formulation
We begin the description of the ILP formulation by defining the
variables used.3 V is the set of all nodes in the stream graph and E
is the set of all directed edges in the stream graph. Cfixed ⊆ V is
the set of all filters fixed to the CPU. This includes all stateful filters
and peeking filters whose working sets are larger than the size of the
shared memory on the GPU. We use 0-1 constants PEEKv, ∀v ∈
V , which is set to 1, if and only if the filter v is a peeking filter.
For each filter v ∈ V , gpuv is a 0-1 variable; gpuv is set to 1 (by
the solver) if v is assigned to the GPU. The real valued variables
shufu,v ≥ 0, ∀(u, v) ∈ E and deshufu,v ≥ 0, ∀(u, v) ∈ E
denote the shuffle and deshuffle cost associated with a partition
for each edge (u, v) ∈ E respectively. DC(u, v) and SC(u, v)
are functions that return the deshuffle and shuffle cost associated
with an edge (u, v) respectively, which depends on the amount of
data transferred on the edge (u, v), but is a constant for a given
edge in the stream graph. The real valued variables tranu,v ≥
0, ∀(u, v) ∈ E denote the DMA transfer cost associated with a
partition for each edge (u, v). costshuf ≥ 0 is a real valued variable
indicating the total shuffle and deshuffle cost associated with a
partition. The real valued variable costDMA ≥ 0 denotes the total
DMA transfer cost associated with a partition. Constants KGPUv

and KCPUv denote the number of instances of a filter v ∈ V , in
one steady state iteration of the software pipelined schedule, when
filter v is mapped onto the GPU and the CPU respectively. These
are the scaled steady state firings to ensure efficient execution on the
respective devices. Ncpus and Ngpus are constants which denote the
number of CPU cores and GPU SMs available, respectively. Lastly,

3 In our notation, variables in the ILP formulation are represented using
lower case letters and constants using upper case letters.

Dcpu(v) and Dgpu(v) are the delays of one instance of a filter v
on the CPU and the GPU respectively, which are obtained through
profiling. TGC(u, v) and TCG(u, v) refer to the DMA transfer
cost associated with the edge (u, v), from the GPU to the CPU and
from the CPU to the GPU respectively.

3.2.1 Task Partitioning
We now describe the constraints for the ILP formulation for the task
partitioning of the filters between the CPU cores and the GPU. First,
we ensure that all filters in the set Cfixed are kept on the CPU, by
the following constraint:

gpuv = 0, ∀v ∈ Cfixed (1)

We model the DMA costs incurred by the cut edges, i.e., the edges
with one end on the GPU and the other on the CPU, or vice versa
as:

tranu,v ≥ (gpuu − gpuv)× TGC(u, v), ∀(u, v) ∈ E (2)

tranu,v ≥ (gpuv − gpuu)× TCG(u, v), ∀(u, v) ∈ E (3)
Note that at most one of the above two inequalities would be active
as the RHS of the other would yield a negative value.4 Also, when
both u and v are scheduled on the CPU (or both on the GPU), the
RHS of the inequalities 2 and 3 would be 0. The total DMA cost
associated with a partition is modeled as:

costDMA =
∑

(u,v)∈E

tranu,v (4)

Inequalities (2) and (3) ensure that the tranu,v variables are greater
than or equal to the DMA costs associated with the edge (u, v).
Since the objection function is to minimize the Initiation Interval
(II), these values will be pushed to their lowest permissible levels.

We now model the shuffle and deshuffle costs associated with a
partition. The conditions for an edge (u, v) to require a shuffle or
deshuffle operation are: (i) When filter u is assigned to the GPU
and v is assigned to the CPU, deshuffle if and only if filter u does
not peek; this is because if filter u peeks, then it would produce
its outputs in a deshuffled order already. (ii) When both filters u
and v are assigned to the GPU, deshuffle if and only if filter v
peeks and filter u does not; this is because there is no need to
deshuffle between a pair of peeking filters connected by a producer -
consumer relationship, since the output of the producer would be in
a deshuffled order already, by virtue of it being a peeking filter. (iii)
When filter u is assigned to the CPU and v is assigned to the GPU,
shuffle if and only if filter v does not peek. The reasoning is similar
to the reasoning behind condition (i). (iv) When both filters u and v
are assigned to the GPU, shuffle if and only if filter u peeks and filter
v does not. Again, the reasoning is similar to the reasoning behind
condition (ii). Based on these conditions, we model the shuffle and
the deshuffle costs as follows. Specifically, inequalities (5) and (6)
model the deshuffle costs according to the conditions (i) and (ii),
while inequalities (7) and (8) model the shuffle costs according to
the shuffle conditions (iii) and (iv)

deshufu,v ≥ (gpuu − gpuv)× (1− PEEKu)×
DC(u, v), ∀(u, v) ∈ E (5)

deshufu,v ≥ (gpuu + gpuv − 1)× PEEKv×
(1− PEEKu)×DC(u, v), ∀(u, v) ∈ E (6)

shufu,v ≥ (gpuv − gpuu)× (1− PEEKv)×
SC(u, v), ∀(u, v) ∈ E (7)

shufu,v ≥ (gpuu + gpuv − 1)× PEEKu×
(1− PEEKv)× SC(u, v), ∀(u, v) ∈ E (8)

4 In this ILP formulation, it is ensured that all variables get a non-negative
value (the non-negativity constraints are not shown). Thus if the RHS is
negative, the constraint is subsumed by tranu,v ≥ 0.



Note that in equations (5), (6) (7) and (8), PEEKu, PEEKv ,
SC(u, v) and DC(u, v) are constants. The total shuffle and deshuf-
fle costs are thus modeled by the following constraint:

costshuf =
∑

(u,v)∈E

shufu,v +
∑

(u,v)∈E

deshufu,v (9)

We model the constraints on the Initiation Interval II as follows:
II ≥ costDMA (10)

II ≥
1

Ngpus

(∑
v∈V

(gpuv ×Dgpu(v)×KGPUv) + costshuf

)
(11)

II ≥
1

Ncpus

∑
v∈V

((1− gpuv)×Dcpu(v)×KCPUv (12)

Having thus modeled the II to be the maximum of the load on the
GPU, the load on the CPU and the DMA load, we can now achieve
an optimal II by using an objective function which minimizes II
subject to the constraints developed.

3.2.2 Instance Partitioning
We now describe the ILP formulation we use to partition the in-
stances of the filters assigned to the CPU or to the GPU from the
formulation in Section 3.2.1. In this phase, partitioning the instances
of the filters, rather than the filters themselves, allows us to perform
the partition at a much finer granularity.

We define NodesCPU be the set of all nodes assigned to the
CPU cores and NodesGPU be the set of all nodes assigned to the
GPU obtained by the filter partitioning step. We first consider the
set NodesCPU and define 0-1 integer variables wcpuk,v,p, ∀v ∈
NodesCPU , ∀k ∈ KCPUv, ∀p ∈ [0, Ncpus), which indicate
if the kth instance of a filter v is to be assigned specifically onto
the processor core p. To ensure that every instance of every filter
is mapped on to exactly one CPU core, we model the following
constraint:∑

p∈[0,Ncpus)

wcpuk,v,p = 1, ∀v ∈ NodesCPU , ∀k ∈ [0, KCPUv)

(13)
Now to ensure that no core is loaded beyond the Initiation Interval
II , achieved as in Section 3.2.1, we use the following constraint:∑

v∈NodesCP U

∑
k∈[0,KCPUv)

(wcpuk,v,p ×Dcpu(v)) ≤ II,

∀p ∈ [0, Ncpus) (14)
By solving these constraints, a partitioning of the instances of the
filters assigned to the CPU can be obtained which satisfies the II that
has been determined. A similar formulation is used to partition the
instances of the filters assigned to the GPU across the GPU SMs,
as well as to partition the instances of the shuffle and deshuffle
operations across the GPU SMs.

3.3 An Efficient Heuristic Algorithm
While the ILP formulation yields optimal solutions to the partition-
ing problem and is useful to compare other methods with a known
lower bound on the II, it is not quite suited for use in a production
environment, since the execution time for solving the ILP could be
very large. This motivates the development of a heuristic algorithm
for the task partitioning. Intuitively, we would expect the nodes as-
signed to the CPU to be the nodes most beneficial to execute on the
CPU. We therefore define Speedupcpu =

Dgpu(v)

Dcpu(v)
, for each filter

v, where Dcpu(v) and Dgpu(v) are as defined in Section 3.2. A high
value for this metric implies that the filter is better suited for execu-
tion on the CPU than on the GPU. Now, taking the intuition further,
we would expect not just the nodes with the highest Speedupcpu

Algorithm 1 Heuristic Partitioning Algorithm
1: procedure PARTITION(CPUNodes, GPUNodes)
2: S ← Nodes sorted in decreasing order of SpeedupCPU
3: Clusters← GETCLUSTERS(S)
4: bestCluster ← REFINECLUSTERS(Clusters)
5: CPUNodes← CPUNodes ∪ bestCluster
6: GPUNodes← GPUNodes− bestCluster
7: end procedure
8:
9: procedure GETCLUSTERS(S) . Returns a set of clusters

10: clusters← ∅
11: while ((S! = ∅) ∧ (numNodes < thresh× |V |)) do
12: curCluster ← ∅
13: root← First Node in S
14: S ← S − root
15: curCluster ← curCluster ∪ root
16: GROWCLUSTER(curCluster, root)
17: clusters← clusters ∪ curCluster
18: numNodes← numNodes + |curCluster|
19: return curCluster
20: end while
21: end procedure
22:
23: procedure GROWCLUSTER(curCluster, root)
24: newRoot← The node among all the predecessors of
25: root, which is most beneficial to be added to CPUNodes
26: in terms of reduction in II
27: curCluster ← curCluster ∪ newRoot
28: GROWCLUSTER(curCluster, newRoot)
29: newRoot← The node among all the successors of
30: root, which is most beneficial to be added to CPUNodes
31: in terms of reduction in II
32: curCluster ← curCluster ∪ newRoot
33: GROWCLUSTER(curCluster, newRoot)
34: end procedure

values to be assigned to the CPU but also some of their neighbor-
ing nodes which could possibly have low values of Speedupcpu,
as the cost of DMA transfers and the shuffle and deshuffle costs (if
necessary) would otherwise dominate and offset the benefits.

Going by this intuition, we propose the heuristic described in
Algorithms 1 and 2. The procedure partition is the main entry
point for the partitioner. The sets CPUNodes and GPUNodes
form the initial partition with CPUNodes = Cfixed and with
GPUNodes = V − Cfixed. The first step of the partitioning is
to get the set of clusters of nodes that are beneficial to be moved to
the CPU. This is achieved by a call to the procedure getClusters.
This procedure takes as input the set of all nodes sorted in decreas-
ing order of their Speedupcpu values. It then calls the recursive
procedure growCluster on these nodes to obtain a set of clusters.
The threshold mentioned in line 11 determines how much of the
graph is covered by the process of growing the clusters. Higher val-
ues result in a larger number of clusters. We set this parameter to
2.5 in all experiments, since it provides a reasonable compromise
between speed and accuracy. Note that the clusters obtained in this
fashion are not necessarily disjoint.

Growing clusters in this fashion has the limitation that it can only
move contiguous regions in the stream graph to the CPU. It will not
be able to capture partitions such as that shown in Figure 2(d). To
overcome this limitation, we follow up the cluster growing phase
with a cluster fusion phase. The procedure refineClusters per-
forms this operation, utilizing a smart fusion process. The smart
fusion process, described in the procedure smartFusion, essen-
tially takes two clusters and greedily merges the parts of them
that result in the maximum reduction in II. Thus the procedure
refineClusters iteratively tries to apply smartFusion to the set
of clusters until no further benefits can be obtained from the fusion.
It then returns the fused cluster with the lowest II value.

The final CPU partition is thus the set of fixed CPU nodes, along
with the nodes in the best cluster; while the final GPU partition



Algorithm 2 Heuristic Partitioning Algorithm (...contd.)
35: procedure REFINECLUSTERS(clusters)
36: while true do
37: tryAgain← false
38: srtClust← clusters sorted in increasing
39: order of II they achieve
40: for i← 0, |srtClust| do
41: Choose a j > i such that reduction in II by calling
42: SMARTFUSION(srtClust[i], srtClust[j])
43: is maximum.
44: if no such j exists then
45: continue
46: else
47: newFusion←
48: SMARTFUSION(srtClust[i], srtClust[j])
49: srtClust← srtClust− srtClust[i]
50: srtClust← srtClust− srtClust[j]
51: srtClust[i]← newFusion
52: clusters← srtClust
53: tryagain← true
54: break
55: end if
56: end for
57: if tryagain is false then
58: return clusters[0]
59: end if
60: end while
61: end procedure
62:
63: procedure SMARTFUSION(clusterA, clusterB)
64: sortedFuse← clusterA ∪ clusterB
65: with nodes sorted in decreasing order of Speedupcpu

66: bestII ←∞
67: fused← ∅
68: for i← 0, |sortedFuse| do
69: if II by adding sortedFuse[i] to CPU < bestII then
70: fused← fused ∪ sortedFuse[i]
71: end if
72: end for
73: return fused
74: end procedure

consists of all remaining nodes in the stream graph. Note that
the fixed CPU nodes are never considered to be moved to the
GPU by the partitioning algorithm. All the II calculations in the
algorithm are done by taking these fixed nodes on the CPU into
account, in addition to whatever other nodes might be added. The II
calculations take into account the shuffle and deshuffle costs as well
as the DMA transfer costs associated with the partition.

Once the sets of CPU nodes and the GPU nodes have been
decided, we use Metis [16] as a set partitioner to partition the
instances of filters across the CPU cores or the GPU SMs. We do
this by adding zero weight edges between the instances of the filters,
since we are only concerned with load balancing. We also partition
the instances of the shuffle and deshuffle operations using the same
technique. This completes the instance partitioning step.

3.4 Modulo Scheduling
We now describe the modulo scheduling algorithm that we adopt
to assign the instances of the filters to stages [22] in the software
pipelined kernel in order to ensure correct execution. The stage
assignment process essentially serves to set up the iteration dif-
ferences between the various filters, while taking into account the
DMA transfer latency and the shuffle and deshuffle latencies asso-
ciated with the edges of the stream graph.

We use a simple modulo scheduling algorithm to orchestrate
the execution of the filters, the DMA transfers and the necessary
shuffles and deshuffles. Essentially, our algorithm considers nodes
of the stream graph in a topologically sorted ordering. This ensures
that each node is assigned a stage only after all its predecessors have

been assigned stages. Our method assigns a stage number to each
node based on the following rules:
1. For an edge (u, v) if u is assigned to the CPU and v is assigned

to the GPU or vice versa, then stage(v) ≥ stage(u) + 2.
2. For an edge (u, v), if both u and v are assigned to the CPU or

to the GPU, then stage(v) ≥ stage(u) + 1.
3. If an edge (u, v) requires a shuffle or a deshuffle operation, then

the stage(v) as computed using Rules 1 or 2 above must be
further increased by one.
Rule 1 ensures that the stages of producer and consumer nodes

that are across devices are separated by at least 2, to ensure that
the DMA operation can be inserted in the intermediate stage. Rule
2 ensures that if the nodes are assigned to the same partition, then
the stages are separated by 1, since we do not synchronize within
a software pipelined kernel. Finally, Rule 3 ensures that if a shuffle
or deshuffle operation is required on an edge, then the stages of the
producer and consumer nodes are separated by 1 stage more than
that mandated by Rules 1 and 2, so that a shuffle operation can then
be inserted in the intermediate stage. The software pipelined kernel
shown in Figure 3 obeys these rules.

Once the stages for the nodes have been assigned, the stages
to the DMA operations and the shuffle operations are assigned.
Our method assigns stages to the DMA and shuffle operations
such that DMA transfers into the GPU occur As Late As Possible
(ALAP), while DMA transfers out of the GPU occur As Soon As
Possible (ASAP). This is done to conserve the limited memory space
available on the GPUs, at the cost of increased memory usage in the
CPU address space.

It is important to note that this algorithm will fail if there are
cycles in the StreamIt graph, since no topological sort is possible
in that case. While StreamIt has a feedback loop construct, none
of the benchmarks distributed with the StreamIt toolchain utilize
this construct. We assume that even if the StreamIt graph contains
feedback loops, they can be fused [8] into a single stateful filter
before the modulo scheduling algorithm is invoked.

3.5 Code Generation
The StreamIt compiler is a source to source compiler, capable of
generating C-like code. We have modified the compiler to generate
CUDA code for the filters assigned to the GPU and C code for
the filters assigned to the CPU. The compiler also takes the buffer
layout into consideration while generating code for the CPU and the
GPU. The CUDA code generated by the StreamIt compiler is then
compiled to native code by the nvcc and gcc compilers for the GPU
and CPU respectively.

The code generation scheme we use is the predicated kernel only
code schema described in [22]. Each SM on the GPU has access
to the index of the block it is executing through a variable called
blockIdx. We set the number of blocks to match the number of
SMs on the GPU. Thus the blockIdx variable has a one-to-one
mapping with the SMs and can be used to separate the code to be
executed by each SM. Within the CPU cores, we create as many
CPU worker threads as required at the beginning of the program
execution. These threads perform the following actions indefinitely:
1. Wait for work.
2. Execute the kernel.
3. Notify completion to the main thread.

The CPU code is also predicated by the threadid such that each
thread executes only the work assigned to it. Further, the threads
are pinned to the CPU cores to ensure that the scheduler does not
migrate them to another processor. Both the GPU code and the
CPU code have a local variable that acts as the staging predicate,
allowing each stage to be turned on or off as required, for the
prologue and the epilogue of the software pipelined schedule.



The main thread, which executes on the CPU, is responsible for
orchestrating the execution of the all the CPU threads, the DMA
transfers and the GPU calls. It executes the following actions in a
loop:
1. Shift the staging predicate appropriately if executing in the

prologue or the epilogue phase.
2. Issue an asynchronous call to execute the GPU kernel.
3. Wake up the worker threads.
4. Issue asynchronous calls to initiate the necessary DMA trans-

fers.
5. Wait for completion of the worker threads and the GPU kernel

call.
We also perform an additional post-processing pass after the mod-
ulo scheduling to reduce the number of function calls to be ex-
ecuted on the GPU and the CPU. Specifically, if an SM in the
GPU (or a core on the CPU) is to execute n contiguous instances
m, m + 1, . . . , m + n − 1 of a given filter v, then we compile it
as a single call to the work function of v, rather than n calls. This
has been done because the nvcc compiler that we use to compile
the CUDA code for the GPUs takes time that is super-linear in the
length of the GPU kernel code. Thus, reducing the number of calls
to the filter work functions on the GPU, greatly reduces the com-
pile time and memory requirements of the nvcc compiler. Using this
technique, we were able to compile within a few minutes, programs
that had previously caused the compiler to run out of memory after
trying to compile for a few hours.

4. Experimental Results
We have implemented both the ILP partitioner as well as the heuris-
tic partitioner and the simple software pipelining method described
in Section 3.4 in the StreamIt compiler framework version 2.1.1,
publicly available from the StreamIt website [3]. The compiler
emits CUDA and C code which are then compiled by the nvcc and
gcc compilers for the GPU and CPU respectively. All experiments
reported in this section were performed on machines with two quad
core Intel Xeon E5440 processors running at 2.83 GHz with 16GB
of FB-DIMM RAM and a graphics card based on the GeForce 8800
GTS 512 GPU with 512 MB of device memory. The Linux op-
erating system, with kernel version 2.6.24 was installed on these
machines. The GPUs were driven by the NVIDIA driver version
180.11 and the CUDA 1.1 toolchain was used to build the appli-
cations. Table 4 provides the details of each benchmark that was
evaluated. The benchmarks were all taken from the StreamIt bench-
mark suite [3]. We report the speedup over a single threaded CPU
execution. We define the speedup as the ratio of tsyn to tcpu, where
tcpu is the time taken for a single threaded CPU execution and tsyn

is the time taken for a synergistic execution across the GPU and the
CPU cores, with both executions performing an identical amount of
work. The single threaded CPU code was generated by the cluster
backend of an unmodified StreamIt compiler and compiled with gcc
with an optimization level of -O3.

4.1 Comparison of Heuristic Partitioner with ILP Partitioner
The II values obtained from the ILP and heuristic task partitioner
are compared in Table 4.1. The partitioning was carried out assum-
ing 4 CPU cores and 16 GPU SMs. The results indicate that the
heuristic partitioner performs quite well with average an degrada-
tion of 9.05%. Further, the degradations are well within 10% for
9 out of 12 benchmarks. A few benchmarks show higher degrada-
tions, upto 22.3%. The large degradation in Bitonic-Rec is primarily
due to the fact that the II is extremely small. The ChannelVocoder
benchmark is an interesting case. The optimal solution in this case
is one which does not involve any shuffle or deshuffle operations.
Thus, any deviation from the optimal would incur some shuffle or
deshuffle operations and would tend to increase the II. Although

Benchmark Filters |Cfixed| Description
Bitonic 58 0 Bitonic sorting network

for sorting 8 integers
Bitonic-Rec 61 0 Recursive Implementation

of the bitonic sorting
network

ChannelVocoder 55 1 Vocoder Implementation
DCT 40 0 8x8 DCT Implementation
DES 55 0 Implementation of the

DES crypto algorithm
FFT-C 26 0 Coarse Grained FFT
FFT-F 99 0 Fine Grained FFT
Filterbank 53 0 Filter bank for

multirate signal processing
FMRadio 67 0 Software FM Radio with

equalizer
MatrixMult 43 0 Blocked matrix multiply
MPEG2Subset 39 1 A subset of the

MPEG2 Decoder
TDE 29 0 Time Delay Equalization

phase from Ground
Moving Target Indicator)

Table 2. Benchmarks Evaluated

Benchmark II (ILP) II (Heur) %Degrade
(ns) (ns)

Bitonic 78778 82695 4.97
Bitonic-Rec 120576 143965 19.4
ChannelVocoder 8942998 10126982 13.24
DCT 1655026 1747211 5.57
DES 426207 454630 6.67
FFT-C 330979 405003 22.37
FFT-F 428332 443251 3.48
Filterbank 729004 785793 7.79
FMRadio 207985 217004 4.34
MatrixMult 1299710 1422917 9.48
MPEG2Subset 1918754 1991250 3.78
TDE 14646894 15751827 7.54

Table 3. Performance of the Heuristic Partitioner compared to the
ILP partitioner in terms of achieved II

our heuristic takes the shuffle operations into account while calcu-
lating the II, it fails to obtain a solution which does not require any
shuffle or deshuffle operations. FFT-C owes its large degradation to
the fact that it is a very small application, with only 26 filters and
a relatively small II. Increasing the coverage threshold, mentioned
in Algorithm 1, to 5 results in an improvement for FFT-C bringing
down the degradation to about 10%.

Next we report the execution times for the partitioning using the
ILP formulation and the heuristic partitioner. The heuristic parti-
tioning method took a total of 35.9 seconds for all the benchmarks.
This is considerably lower than the time taken by the ILP solver,
which took a total of 2379 seconds over all the benchmarks. Also,
given that the heuristic partitioner has been implemented in Java
(which is the language used for the StreamIt compiler), the imple-
mentation and hence the execution time could be optimized further.

Having demonstrated that the heuristic partitioner compares fa-
vorably with the ILP partitioner in terms of the II achieved, we now
compare the actual runtime of the code generated by both tech-
niques. We apply the appropriate level of coarsening as in [27]. A
coarsening of n essentially executes the software pipelined kernel n
times, thereby amortizing the cost of the GPU kernel launch and the
cost of waking up the worker threads. The numbers reported in Fig-
ure 5 are all for the best coarsening, which may vary across bench-
marks and depends on the buffer requirements of each benchmark.
Figure 5 shows the results with the applications being compiled for



Figure 5. Performance of the ILP vs. heuristic partitioner

4 CPU cores and 16 SMs. 5 Clearly, the heuristic partitioner per-
forms quite well. It is surprising that in the case of the Bitonic-Rec,
FFT-C, Filterbank and FMRadio benchmarks, the heuristic parti-
tioner actually outperforms the ILP partitioner, albeit by a very
small margin. This is despite the fact that the IIs achieved by the
heuristic partitioner are larger than the IIs achieved by the ILP par-
titioner for these benchmarks. We attribute this to two factors. First,
as demonstrated in [23], the dynamic factors which are not con-
sidered by the ILP formulation could be affecting the performance.
For instance, neither the ILP nor the heuristic partitioner takes sec-
ond order effects into account, such as the interaction between fil-
ters executing concurrently on the different SMs of the GPU or on
the different cores of the CPU. While the profile runs try to model
the contention for bandwidth by executing the same filter on all the
GPU SMs or CPU cores, it is impossible to predict how the execu-
tion of another filter on a different core or SM would interact with
the execution of a filter on a given core or SM. Secondly, as men-
tioned in Section 3.5, we perform a post-processing pass to reduce
the number of device calls. The ILP partitioner tends to assign in-
stances to the CPU cores or SMs in an arbitrary fashion, whereas
the Metis partitioning tends to keep consecutive instances of filters
together on the same core or SM. This results in a large number of
calls being merged into a single call, when the heuristic partitioner
is used, thereby eliminating the overhead of some function calls.
Both these factors account for the heuristic partitioning performing
slightly better than the ILP partitioner in some cases. Overall, the
ILP partitioner yields a geometric mean speedup of 6.84 over the
single threaded execution, while the heuristic partitioner yields a
geometric mean speedup of 6.68 across the entire benchmark suite.

4.2 Comparison of the Synergistic Heuristic with Simpler
Partitioning Heuristics

We now compare the performance of the synergistic partitioning
approach with other approaches. Specifically, we evaluate the per-
formance of a naı̈ve partitioning where only the nodes that are in
Cfixed are executed on the CPU cores, while all other nodes are
executed on the GPU. We refer to this approach as “Mostly GPU”.
For programs without stateful filters, this is the same partitioning
as done in [27]. In the second scheme, called “CPU Only”, all the
nodes are partitioned for execution on the CPU cores. In all cases,
we report speedups relative to single threaded CPU execution.

5 We have conducted experiments with 2 CPU cores and 6 CPU cores.
The performance marginally decreases with 2 CPU cores and marginally
increases with 6 CPU cores. We do not present these results here due to
space limitations.

Figure 6. Comparison of Synergistic Execution with other schemes

Figure 6 compares the performance of the three schemes. In
most of the benchmarks, our synergistic execution performs sig-
nificantly better than the CPU Only and Mostly GPU approaches,
resulting in upto 51.96X speedup and a geometric mean speedup of
6.68X across the benchmark suite over a single threaded CPU exe-
cution; As opposed to 1.44X and 5.62X obtained by the CPU Only
and Mostly GPU schemes respectively. Thus, the synergistic execu-
tion yields an 18.9% improvement over the Mostly GPU approach.

Next, we discuss the performance of the CPU Only scheme in
detail, where our instance partitioning approach yields an average
speedup of 1.44X. The Bitonic and Bitonic-Rec benchmarks per-
form poorly. These benchmarks are extremely bandwidth intensive.
The only work that the filters in these benchmarks do is to compare
and exchange values, with no other computation. Thus, these bench-
marks will hit the bandwidth limitations with any scheme. Other
benchmarks, notably DES and FFT-F, show a performance degra-
dation (speedups less than 1) when compiled for multiple CPUs. We
attribute this to the increased number of cache misses due to the par-
titioning being done across the CPU cores in a cache oblivious fash-
ion. The baseline — the single threaded CPU execution — executes
all the filters in a single appearance schedule [19] on the same core.
Thus the producer-consumer locality results in a large degree of
cache reuse, which leads to better performance in a single threaded
CPU execution. Our partitioning scheme partitions the instances of
the filters without considering where the producer instances of the
filter are scheduled. Benchmarks like MatMul, MPEG2Subset and
TDE display no speedup at all for the CPU Only scheme for the
same reason. It has been demonstrated in [24] that cache aware opti-
mizations on StreamIt programs can yield large performance gains.
Benchmarks with peeking filters, such as Filterbank, FMRadio and
ChannelVocoder, yield large speedups on the CPU. While the cache
oblivious partitioning hurts the performance of these programs too,
the effect is more than offset by the fact that executing them 128
times or more at one go allows for a large amount of cache reuse,
owing to the peek set of these filters.

Our primary objective in this work has been to build a syner-
gistic execution framework for executing stream programs across
the GPU and the CPU cores. We have not taken cache consider-
ations into account during the CPU partitioning phase. The cache
considerations are irrelevant for the GPU, since they do not have a
multilevel memory hierarchy in general. Our framework can easily
be extended to cover this by considering two versions of CPU pro-
file data for each filter — one with a cold cache and the other with
a warm cache — and using the appropriate versions of the profile
data to yield an optimal partition. With this, the proposed approach
can also be used for executing StreamIt programs on multicores.



5. Related Work
Early work on stream graphs by Lee, et. al. [4, 19], have introduced
the Synchronous Data Flow (SDF) model of computation, providing
a sound theoretical framework for the stream programming model.
Stream Flow Graphs have been studied by Gao, et. al. in [11].
Govindarajan, et. al. studied the software pipelining of Regular
Stream Flow Graphs (RSFGs) [13] using a linear programming
formulation. The framework was extended to reduce the buffer
requirements of rate optimal r-periodic schedules in [14].

The StreamIt project has recently revived interest in the dataflow
graph model of computing [3]. StreamIt introduces a peek construct
that allows filters to inspect data on the input channels without con-
suming it. Software pipelining the execution of StreamIt graphs
to target the RAW architecture [8, 12] and the Cell BE architec-
ture [18, 29] and recently GPUs [27] has also been investigated. All
these approaches target exploiting only homogeneous cores. Fur-
ther, the framework proposed in [27] cannot handle StreamIt pro-
grams with stateful filters.

The problem of task partitioning has been studied in [15, 28].
However, these approaches have been designed with real-time em-
bedded systems in mind and are not easily adaptable to our scenario
of task partitioning for software pipelining. This work is also sig-
nificantly different from [27], owing to the fact that the StreamIt
program is partitioned across heterogenenous processing elements
with disjoint address spaces.

Recent work on GPUs has suggested program optimization
space pruning [9]. This method reduces the search space in exe-
cution configuration selection and optimization space considerably
and could be used in place of the profiling methodology that we
have adopted. Other work on GPUs have primarily focused on ap-
plication performance tuning [10].

6. Conclusions and Future Work
We have presented a framework for synergistic execution of StreamIt
programs on multicores with accelerators such as the GPU. The
framework takes the DMA latencies and channel capacities into
account while partitioning, by modeling the DMA channel as a re-
source. An efficient heuristic algorithm for partitioning the StreamIt
graph across the CPU cores and the GPU SMs has been proposed
and has been demonstrated to provide good results as compared to
optimal solutions obtained by formulating the problem as an Integer
Linear Program. Our results indicate performance gains averaging
6.84X with a maximum of 51.96X over a single threaded CPU
execution for the StreamIt benchmark suite.

The proposed methodology is directly applicable for all het-
erogeneous accelerator based architectures. An interesting area of
future research would be to perform the cache aware partitioning
across the CPU cores.

References
[1] NVIDIA CUDA Programming Guide. URL http://www.nvidia.

com/cuda.
[2] OpenCL Overview. URL http://www.khronos.org/

developers/library/overview/opencl_overview.pdf.
[3] StreamIt Home Page. URL http://www.cag.lcs.mit.edu/

streamit/.
[4] S. S. Bhattacharyya and E. A. Lee. Looped Schedules for Dataflow De-

scriptions of Multirate Signal Processing Algorithms. Formal Methods
in System Design, 5(3), 1994.

[5] Ian Buck et. al. Brook for GPUs: Stream Computing on Graphics
Hardware. ACM Trans. on Graphics, 23(3), 2004.

[6] J. A. Kahle et. al. Introduction to the Cell Multiprocessor. IBM Journal
of Research and Development, 49(4-5), 2005.

[7] Michael Bedford Taylor et. al. The RAW Microprocessor: A Compu-
tational Fabric for Software Circuits and General-Purpose Programs.
IEEE Micro, 22(2), 2002.

[8] Michael I. Gordon et. al. A Stream Compiler for Communication-
Exposed Architectures. In ASPLOS-X: Proc. of the 10th Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems, 2002.

[9] Shane Ryoo et. al. Program Optimization Space Pruning for a Multi-
threaded GPU. In CGO ’08: Proc. of the sixth annual IEEE/ACM Intl.
Symp. on Code Generation and Optimization, 2008.

[10] Shane Ryoo et. al. Optimization Principles and Application Perfor-
mance Evaluation of a Multithreaded GPU using CUDA. In PPoPP
’08: Proc. of the 13th ACM SIGPLAN Symp. on Principles and Prac-
tice of Parallel Programming, 2008.

[11] G. R. Gao, R. Govindarajan, and P. Panangaden. Well-Behaved
Dataflow Programs for DSP Computation. ICASSP-92: IEEE Intl.
Conf. on Acoustics, Speech, and Signal Processing, 1992., 5, Mar 1992.

[12] Michael I Gordon, William Thies, and Saman Amarasinghe. Exploit-
ing Coarse-grained Task, Data, and Pipeline Parallelism in Stream Pro-
grams. In ASPLOS-XII: Proc. of the 12th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, 2006.

[13] R. Govindarajan and Guang R. Gao. A Novel Framework for Multi-
rate Scheduling in DSP Applications. In ASAP ’93: Proc. of the 1993
Intl. Conf. on Application-Specific Array Processors, Oct 1993.

[14] R. Govindarajan, Guang R. Gao, and Palash Desai. Minimizing Mem-
ory Requirements in Rate-optimal Schedules. In ASAP ’94: Proc. of the
1994 Intl. Conf. on Application Specific Array Processors, Aug 1994.

[15] Junwei Hou and Wayne Wolf. Process Partitioning for Distributed
Embedded Systems. In CODES ’96: Proc. of the 4th Intl. Workshop on
Hardware/Software Co-Design, 1996.

[16] G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for
Irregular Graphs. Journal of Parallel and Distributed Computing, 48,
1998.

[17] B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs. Bell System Tech. Journal, 49, Feb. 1970.

[18] Manjunath Kudlur and Scott Mahlke. Orchestrating the Execution of
Stream Programs on Multicore Platforms. In PLDI ’08: Proc. of the
2008 ACM SIGPLAN Conf. on Programming Language Design and
Implementation, 2008.

[19] E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing. IEEE Trans. on
Computers, 36(1), 1987.

[20] E.A. Lee and D.G. Messerschmitt. Synchronous Data Flow. Proc. of
the IEEE, 75(9), Sept. 1987.

[21] B. R. Rau. Iterative Modulo Scheduling: An Algorithm for Software
Pipelining Loops. In MICRO 27: Proc. of the 27th annual Intl. Symp.
on Microarchitecture, 1994.

[22] B. R. Rau, Michael S. Schlansker, and P. P. Tirumalai. Code Generation
Schema for Modulo Scheduled Loops. In MICRO 25: Proc. of the 25th
annual Intl. Symp. on Microarchitecture, 1992.

[23] John Ruttenberg, Guang R. Gao, A. Stoutchinin, and W. Lichtenstein.
Software Pipelining Showdown: Optimal vs. Heuristic Methods in a
Production Compiler. In PLDI ’96: Proc. of the ACM SIGPLAN 1996
Conf. on Programming Language Design and Implementation, 1996.

[24] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amaras-
inghe. Cache Aware Optimization of Stream Programs. In LCTES
’05: Proc. of the 2005 ACM SIGPLAN/SIGBED Conf. on Languages,
Compilers, and Tools for Embedded Systems, 2005.

[25] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data
Parallelism to Program GPUs for General-Purpose Uses. In ASPLOS-
XII: Proc. of the 12th Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, 2006.

[26] William Thies, Michal Karczmarek, and Saman Amarasinghe.
StreamIt: A Language for Streaming Applications. In CC ’02: Proc. of
the 11th Intl. Conf. on Compiler Construction, 2002.

[27] Abhishek Udupa, R. Govindarajan, and Matthew J. Thazhuthaveetil.
Software Pipelined Execution of Stream Programs on GPUs. In CGO
’09: Proc. of the seventh annual IEEE/ACM Intl. Symp. on Code
Generation and Optimization, 2009.

[28] Ti-Yen Yen and Wayne Wolf. Communication Synthesis for Dis-
tributed Embedded Systems. In ICCAD ’95: Proc. of the 1995
IEEE/ACM Intl. Conf. on Computer-aided Design, 1995.

[29] D. Zhang, Qiuyuan J. Li, Rodric Rabbah, and Saman Amarasinghe.
A Lightweight Streaming Layer for Multicore Execution. SIGARCH
Computer Architecture News, 36(2), 2008.


