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Abstract
For decades, compilers have relied on dependence analysis to deter-
mine the legality of their transformations. While this conservative
approach has enabled many robust optimizations, when it comes
to parallelization there are many opportunities that can only be ex-
ploited by changing or re-ordering the dependences in the program.

This paper presents ALTER: a system for identifying and enforc-
ing parallelism that violates certain dependences while preserving
overall program functionality. Based on programmer annotations,
ALTER exploits new parallelism in loops by reordering iterations
or allowing stale reads. ALTER can also infer which annotations
are likely to benefit the program by using a test-driven framework.

Our evaluation of ALTER demonstrates that it uncovers paral-
lelism that is beyond the reach of existing static and dynamic tools.
Across a selection of 12 performance-intensive loops, 9 of which
have loop-carried dependences, ALTER obtains an average speedup
of 2.0x on 4 cores.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.3.4 [Programming Languages]: Processors—
Compilers, Optimization, Run-time environments

General Terms Performance, Languages, Experimentation

1. Introduction
Throughout the long history of research on automatic paralleliza-
tion, much of the progress has been driven by the compiler’s ability
to accurately detect the dependences between different parts of the
program. Such dependence analysis has evolved greatly over the
years, encompassing representations such as direction vectors, dis-
tance vectors, and affine dependences [12] as well as techniques
such as array dataflow analysis [26], interprocedural dependence
analysis [9] and constraint-based dependence analysis [32]. The
precision of dependence analysis has also depended on improve-
ments in alias analysis, shape analysis, and escape analysis, which
each have their own rich history.

Despite the tremendous progress in dependence analysis, in
practice it remains commonplace for an incomplete understand-
ing of the program’s dependences to prohibit seemingly simple
transformations, such as parallelization of DOALL loops. There are
three fundamental limitations that prevent any dependence analysis
from fully solving the problem of automatic parallelization. First,
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as the general case of dependence analysis is undecidable [36], any
static analysis must be conservative in over-approximating the pro-
gram dependences, thereby under-approximating the opportunities
for parallelization. A related problem is that of induction variable
analysis: certain dependences can be soundly eliminated via con-
version to a closed-form function of the loop index, but complex
induction variables (such as iterators through a linked list) are dif-
ficult to detect automatically.

Second, even if dependences are precisely identified (e.g., us-
ing dynamic dependence analysis [43], program annotations [45],
or speculative parallelization [11, 15, 21, 27, 33, 39, 44]), there re-
main many programs in which memory dependences are accidental
artifacts of the implementation and should not inhibit paralleliza-
tion. For example, it has been shown that in many performance-
intensive loops, the only serializing dependences are due to calls to
the memory allocator, which can be freely reordered without im-
pacting correctness [7, 41]. Similar dependences are due to benign
references to uninitialized data structures, maintenance or output of
unordered debugging information, and other patterns [41]. Only by
allowing the compiler to reorder or ignore such dependences is it
possible to extract parallelism from many programs.

Third, there are many cases in which broken data dependences
do change the course of a program’s execution, but the algorithm
employed is robust to the changes and arrives at an acceptable out-
put anyway. A simple example is the chain of dependences implied
by successive calls to a random number generator, which has the
potential to serialize many loops. However, in algorithms such as
simulated annealing or monte-carlo simulation, any ordering of the
calls is permissible so long as each result is random [7, 41]. A more
subtle example is that of successive relaxation algorithms, in which
the solution is iteratively improved in a monotonic fashion and bro-
ken dependences (such as stale reads) may enable parallelism at the
expense of a slight increase in convergence time.

In this paper, we make three contributions towards enabling par-
allelization of programs that are beyond the reach of dependence
analysis. First, we propose a new execution model, StaleReads,
which enables iterations of a loop to execute in parallel by allowing
stale reads from a consistent snapshot of the global memory. This
model enforces a well-known guarantee called snapshot isolation
that is frequently employed in the database community as a permis-
sive and high-performance policy for transactional commit. How-
ever, while other concepts from databases have impacted program-
ming languages via transactional memory, we are unaware of any
exploration or implementation of snapshot isolation as a general-
purpose mechanism for loop parallelization. In addition to the basic
model, we also offer support for reductions, in which commutative
and associative updates to specific variables are merged upon com-
pletion of each iteration. We demonstrate that snapshot isolation
exposes useful parallelism in several algorithms, in particular for
convergence algorithms that are robust to stale reads (as described
in the previous paragraph).



while (CheckConvergence(AMatrix, XVector,
BVector, dimA) == 0) {

tripCount++;
[StaleReads]
for (int i = 0; i < dimA; i++) {

sum = 0;
// scalarProduct reads all of XVector
sum = scalarProduct(AMatrix[i], XVector);
sum -= AMatrix[i][i] * XVector[i];
// write to XVector[i]
XVector[i] = (BVector[i] - sum) /

AMatrix[i][i];
}

}

Figure 1. Iterative algorithm to solve a system of linear equations
of the form Ax=b. The for loop is annotated by ALTER to indicate
that the iterations are likely to tolerate stale reads. Parallelization
using the ALTER compiler and runtime system gives a speedup of
1.70x on 4 cores (for a sparse matrix A with 40,000 elements).

Our second contribution is a general framework, ALTER, for
specifying dependences that do not matter and leveraging that in-
formation in a parallel runtime system. Using ALTER, the program-
mer annotates each loop with one of two permissive execution poli-
cies. In addition to StaleReads, ALTER supports OutOfOrder
execution of the loop iterations; this corresponds to the database
notion of conflict serializability and may break the original depen-
dences so long as execution is consistent with some serial order-
ing of the iterations. Annotations are also used to declare reduc-
tion variables, as described above. Given the annotations, ALTER

implements the desired parallelism using a deterministic fork-join
model. Each loop iteration (or chunk of iterations) is treated as a
transaction, executing in an isolated process and committing with
a different policy depending on the model of parallelism. The im-
plementation of ALTER relies on a novel multi-process memory
allocator as well as custom collections classes that enable iterators
over linked data structures to be recognized as induction variables.

Our third contribution is a practical methodology that leverages
ALTER to discover and exploit parallelism. As the ALTER annota-
tions may change the local behavior of a program, it is intractable to
infer or verify them using a sound static analysis. However, to assist
programmers in exploring the space of potential parallelizations,
we propose a test-driven framework that evaluates each possible
annotation on each loop in the program and conveys to the pro-
grammer the set of annotations that preserve the program output
across a test suite. This dynamic analysis, while unsound, can be
used to infer likely annotations that are subsequently validated by
the programmer. The test-driven framework benefits greatly from
ALTER’s deterministic execution model, as each test needs to be
executed only once. Using this end-to-end methodology, we ap-
ply ALTER to assist with parallelization of a set of loops, drawn
from Berkeley’s parallel dwarfs as well as the STAMP suite. AL-
TER finds parallelism that is undiscoverable by prior techniques and
accelerates performance-intensive loops by an average of 2.0x on
four cores.

The rest of this paper is organized as follows. We start with a
motivating example for the violation of program dependences dur-
ing loop parallelization (Section 2). We proceed to describe the
ALTER annotation language (Section 3), the implementation of the
ALTER compiler and runtime system (Section 4), the annotation
inference algorithm (Section 5) and the usage scenarios in which
ALTER could be applied (Section 6). We then present our experi-
mental evaluation (Section 7) before wrapping up with related work
(Section 8) and conclusions (Section 9).

// convergence check simplified for presentation
while (delta > threshold) {

delta = 0.0;
[OutOfOrder + Reduction(delta, +)] or
[StaleReads + Reduction(delta, +)]
for (i = 0; i < npoints; i++) {

index = common_findNearestPoint(feature[i],
nfeatures, clusters, nclusters);

// If membership changes, increase delta
// by 1. membership[i] cannot be
// changed in other iterations
if (membership[i] != index) {

delta += 1.0;
}
// Assign the membership to object i
membership[i] = index;
// Update new cluster centers :
// sum of objects located within
*new_centers_len[index] =

*new_centers_len[index]) + 1;
for (j = 0; j < nfeatures; j++) {

new_centers[index][j] =
new_centers[index][j] + feature[i][j];

}
}

}

Figure 2. K-means clustering algorithm from STAMP. ALTER

suggests the OutOfOrder and StaleReads annotations along
the for loop, in combination with an additive reduction on the vari-
able delta (which is used to determine the termination of the overall
algorithm). Parallelizing this algorithm using StaleReads gives
a speedup of 1.71x on 4 cores.

2. Motivating Examples
This section illustrates two examples where breaking dependences
enables parallel execution while preserving the high-level function-
ality.

The first example (see Figure 1) is a numerical algorithm to
solve a system of linear equations of the form Ax = b, where
A is an n × n input matrix, b is an input vector of n elements and
x is the solution vector of n unknown elements. This algorithm
often forms the kernel for solving partial differential equations.
The algorithm has two loops, an outer while loop that checks for
convergence and an inner for loop that re-calculates each element
of XVector based on the values of the other elements. The inner
loop has a tight dependence chain as the XVector element written
to in one iteration is read in every subsequent iteration. Thus, the
only possible way to parallelize this loop is to violate sequential
semantics by not enforcing some of the true dependences.

Based on the results of test cases, ALTER suggests that the in-
ner loop can be parallelized under the StaleReads model. While
some of the values read from XVector will be stale, the algorithm
has an outer while loop which checks for convergence and prevents
these broken dependences from affecting the overall correctness.
This alternate version of the algorithm has been shown in the lit-
erature to have the same convergence properties as the sequential
version [31]. In fact, this algorithm belongs to a class of algorithms,
commonly referred to as algebraic path problems [40], that can tol-
erate some stale reads. This class includes many popular algorithms
such as the Bellman Ford shortest path algorithm, iterative mono-
tonic data-flow analyses, Kleene’s algorithm (for deciding whether
a regular language is accepted by a finite state automaton) and sten-
cil computations.

Note that it is possible that embracing stale reads can increase
the number of (outer loop) iterations needed to converge. For this
benchmark, we observe that this increase is quite small in practice.



This is expected as typically the size of XVector is large (tens of
thousands of elements) while an iteration will read a small number
of stale values (at most (N−1)×chunkFactor values on an N -way
multicore, where chunkFactor is the number of iterations executed
per transaction as detailed later). Using ALTER, this parallelization
gives a speedup of 1.70x with 4 cores for a problem size of 40,000.

The second example (see Figure 2) shows the main loop of the
K-means clustering algorithm. ALTER suggests that the loop can be
parallelized with either OutOfOrder or StaleReads in combi-
nation with an additive reduction on the variable delta. In this case,
OutOfOrder and StaleReads are equivalent with respect to
the program’s execution, because every read of a shared variable
(new centers and new centers len) is followed by a write to the
same location. Thus, even under the StaleReads model there
will not be any stale reads in the execution trace, because con-
flicts in the write sets would cause such concurrent iterations to
conflict (this is clarified in the next section). Nonetheless, annotat-
ing the loop with StaleReads can lead to higher performance
than OutOfOrder, as it is not necessary to track or compare the
read sets within ALTER.

3. Alter Annotation Language
ALTER provides an annotation language for specifying the paral-
lelism in loops (see Figure 3). For all annotated loops, ALTER treats
each iteration as a transaction that executes atomically and in iso-
lation. The conditions under which an iteration commits its results
are governed by the annotation A, which contains two components:
a parallelism policy P and, optionally, a set of reductions R.

The parallelism policy can be one of two types:

1. OutOfOrder specifies that ALTER may reorder the loop itera-
tions, so long as the execution is equivalent to some serial order-
ing of the iterations. This corresponds to the database notion of
conflict serializability. OutOfOrder preserves the semantics
of the original program if the iterations are commutative.

2. StaleReads is more permissive than OutOfOrder: in addi-
tion to reordering iterations, the values read in a given iteration
may be stale. All stale reads are drawn from a consistent but
possibly obsolete snapshot of the global memory. The degree
of staleness is bounded: the memory state seen by iteration i,
which writes to locations W , is no older than the state commit-
ted by the last iteration to write to any location in W . (The only
exception is that of reduction variables, which do not count as
part of W .)

This model corresponds to the database notion of snapshot iso-
lation; two concurrent iterations can commit so long as their
write sets do not overlap. Snapshot isolation is a popular al-
ternative to conflict serializability in the database community,
as it leads to better performance. It is adopted by several ma-
jor database management systems, including InterBase, Oracle,
PostgreSQL and Microsoft SQL Server (2005 onward). How-
ever, to date there has been no programming language or run-
time support for snapshot isolation as a mechanism for loop
parallelization.

The second part of an ALTER annotation is an optional set of
reductions. Each reduction is specified by the name of a program
variable, as well as an operation that is commutative and associa-
tive. The annotation asserts that every access to the variable within
the loop represents an update using the corresponding operation.
For example, if the operation is +, then the variable may appear
only in statements of the form var+=value. Note that this also pro-
hibits any reads of var elsewhere in the loop.

ALTER guarantees that upon completion of the loop, each re-
duction variable has the value corresponding to a serial execution

A := (P,R)
P := OutOfOrder | StaleReads
R := ε | R;R | (var,O)
O := + | × | max | min | ∨ | ∧

Figure 3. ALTER annotation language

of the operations that updated it. Note that under the OutOfOrder
execution model, annotating reductions will not impact the final
values assigned to reduction variables, as OutOfOrder guaran-
tees that all variables (not just reduction variables) are updated in
a manner that is consistent with a serial execution. However, anno-
tating reductions can nonetheless improve the performance under
OutOfOrder, as iterations that were previously serialized by a
dependence on a reduction variable can now execute in parallel.
In the case of StaleReads execution, annotating reduction vari-
ables can impact the final values of those variables (but not any
other variables) as well as impacting performance.

In addition to the parameters specified in the annotation lan-
guage, ALTER also allows the user to specify a chunk factor (cf),
which dictates the granularity of the execution. While our descrip-
tion above deals in terms of individual iterations, in practice it is
beneficial to group multiple iterations together for improving the
efficiency of OutOfOrder and StaleReads execution. The se-
mantics can be understood in terms of chunking: the original loop
L is refactored into a nested loop L′ in which each iteration of L′

represents cf iterations of L. The chunk factor can be designated
on a per-loop basis, or globally for the entire program.

4. Alter Compiler and Runtime
Given a sequential program and a loop to parallelize, the ALTER

compiler produces a concurrent program with embedded calls to
the ALTER runtime library. The concurrent program is parameter-
ized by some additional inputs that indicate the semantics to be
enforced for each loop. If the user provides annotations for a loop,
then these are used to generate the parameters. Otherwise, likely an-
notations can be inferred by testing their conformance to a test suite
(see Section 5). Section 4.2 describes the parameters governing the
execution and the assignments needed to exploit the parallelism al-
lowed by the annotations. A salient feature of the ALTER frame-
work is that the output of the compilation process is a deterministic
parallel program. Details of how this is achieved are provided in
Section 4.3.

4.1 Program Transformation
Program transformations are implemented as phases in the Mi-
crosoft Phoenix compiler.

Deterministic Fork Join Model
The ALTER compiler transforms the program to use a process-
based fork-join model of computation. The model provides ef-
ficient isolation between concurrently executing loop iterations
through copy-on-write page protection. Figure 4 shows what the
transformed program looks like. The shaded vertices and edges in
the figure represent the original sequential control flow.

The high-level functionality of the transformation is to:

1. Create N processes that have identical stack and heap states
(apart from ALTER’s internal variables), corresponding to the
program state on entry to the loop. These N private memories
are copy-on-write (COW) mappings of a committed memory
state. Thus, just before the loop, there are N + 1 versions of
memory. In the figure, � and � describe the implementation of
this functionality using Win32 system calls.
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Fork(N) emulates N calls to the UNIX system call fork by using the Win32 system call CreateProcess and
passing the same executable as the image. CreateProcess is equivalent to a fork and exec on a UNIX
platform, i.e., it creates a new process, loads a new executable image and begins to execute the process
from the entry-point of the image. When a child process calls Fork(N) it simply returns.

Init() internally uses the Win32 system callMapViewOfFileEx to ensure that both heap and stack memory of
all processes are mapped to the same virtual addresses. After this the child processes suspend themselves,
and wait for a signal from the main process. While the main process continues normal execution.

This method performs the following actions for the main process:
(i) Saves the stack context of the main process into a location that
is readable by all the child processes (ii) Changes the protection of

the heap memory area to Copy-On-Write (COW).
(iii) wakes the suspended child processes.

When the child processes receive the signal raised by the main
process, they in turn perform the following actions: (i) Refresh
their heap memory area by re-mapping it with COW protection

usingMapViewOfFileEx. (ii) Restore the stack context saved by the
main process.

For each induction variable i
InitializeIV() performs
{ i := i+step_i*pid}

And AdjustIV() performs
{ i := i + step_i*N }

Calls to Join() and Update() are inserted as the last instructions
in the loop. Once all processes have completed executing their
work Join does the following (i) checks for conflicts as defined
by the semantics, (ii) determines what processes should commit
(iii) commits the write effects of processes to the committed
memory state once all previous processes (processes with
smaller pid) have done so. (iv) Assigns an appropriate return
value to indicate if the process should re-execute the same

iteration, get assigned a new iteration or idle until the next join.

Once all processes have joined Update() ensures that the
private memory of all processes are up-to-date by copying in
relevant blocks (those written to by other processes) from the

committed state.

A call to CompleteWork() is inserted as the first instruction of the
basic block which is the immediate post-dominator of the loop body
to indicate the end of a parallel execution. Through this call the main

process simply remaps the heap area with Read-Write (RW)
protection while each child process suspends itself again, waiting for a

signal from the parent process indicating more work. The main
process then continues to execute the rest of the program.

Execute an
instrumented
version of the
loop body

Figure 4. ALTER’s fork-join model for executing loop iterations concurrently and in isolation.

2. Distribute iterations to processes and orchestrate a lock-step
execution where processes repeatedly: � pickup iterations to
execute. � execute them concurrently in isolation on their own
private memory while tracking read and write sets (details on
instrumentation below). � wait for all processes to complete
execution and then depending on validation against execution
policy either commit writes to committed memory state or
mark the iteration for re-execution next time. Runtime barriers
are used to ensure that processes commit changes one after
another in deterministic order (ascending order of child pid’s).
� re-synchronize process private memory with the committed
memory state once all processes have committed.

These steps are repeated until the loop execution is complete.

To keep things simple, Figure 4 depicts the program transfor-
mation without chunking. The actual transformation introduces an
additional inner loop such that each process executes a consecutive
chunk of iterations between joins.

Memory Management
In addition to the above transformation, all calls to memory allo-
cator methods are replaced with calls to the ALTER-allocator. This
transformation is essential to ensure that in a multi-process setting,
objects can be directly copied between processes without overwrit-
ing live values. The ALTER-allocator is designed to be safe and
efficient under a multi-process execution environment. It ensures
safety by guaranteeing that no two concurrent processes are allo-

cated the same virtual address. We do not describe the design in
detail here except to say that it uses techniques similar to ones used
by HOARD [5]. Where HOARD is optimized to be efficient in a
multi-threaded environment, the ALTER-allocator is designed to be
efficient in a multi-process environment. For example, the allocator
is optimized to minimally use inter-process semaphores and mutual
exclusion primitives. Such inter-process communication primitives
are typically much more expensive than locking primitives that can
be used in a multi-threaded setting.

ALTER Collection Classes
While simple induction variables can be identified via static anal-
ysis, induction variables of loops that iterate over elements of a
heap data structure will not be detected by most compilers. To en-
able parallelization of such loops ALTER exposes a library of stan-
dard data structures that are commonly iterated over. When a user
wants to parallelize a loop that iterates over such a data structure,
she could replace the data-structure with an equivalent ALTER col-
lection class and then use any of the ALTER annotations. ALTER

internally manages the state associated with collection classes in a
process-safe manner. Note that ALTER collections can also safely
be used in a sequential program.

Instrumenting Reads and Writes
The read-write instrumentation performed by the compiler is fairly
standard; we briefly describe it here for the sake of complete-
ness. Accesses to both heap memory locations as well as to local



stack variables are instrumented by the compiler by adding calls to
runtime methods InstrumentRead and InstrumentWrite.
Heap accesses are instrumented at allocation granularity. For in-
stance if a statement of the form ObjPtr->Field = Value;
is encountered, then the object referenced by ObjPtr as a whole
is instrumented, assuming that the ObjPtr refers to an allocation.
The compiler performs the following optimizations to avoid unnec-
essary instrumentation calls:

• No instrumentation is inserted for a memory access if the object
to be instrumented already has a dominating instrumentation.

• If a local variable is defined before its first use, i.e., it is defined
afresh in each iteration of the loop, then it is not instrumented,
unless it is also live-out on loop exit.

• If the loop to be parallelized contains function calls, then ac-
cesses to local variables in the function are not instrumented.

• If the memory access to be instrumented matches a pattern of an
array indexed by an induction variable, i.e., a loop invariant base
pointer indexed by an induction variable, then we instrument
the entire range once rather than instrumenting each individual
array access.

At runtime, the library stores the addresses of the instrumented
blocks in a (local) hash set as well as a (global) array. The hash
set allows quick elimination of duplicates, while the global array
allows other processes to check for conflicts against their respective
read- and write-sets.

4.2 Runtime Parameters
As mentioned previously the ALTER compiler translates the se-
quential program into a concurrent program with some additional
configuration parameters. Four different parameters are exposed,
combinations of which can be used to enforce various formal guar-
antees for the loop.

1. The ConflictPolicy configuration parameter selects one
among four different definitions of conflict, which are applied to
all memory locations not corresponding to reduction variables.
These four policies, FULL, WAW, RAW and NONE form a partial
order with respect to the conditions under which they allow
processes to commit. These terms have the natural intuitive
meaning. FULL allows a process to commit only if neither its
read nor its write set overlaps with the write set of any of the
concurrent processes that committed before it. WAW allows a
process to commit only if its write set does not overlap with the
write set of any of the concurrent processes committed before
it. RAW allows a process to commit only if its read set does not
overlap with the write set of any of the concurrent processes
committed before it. NONE does not check for any conflicts and
allows all processes to commit.

2. The CommitOrderPolicy defines whether the iterations
of the loop should commit in program order (InOrder) or
are allowed to commit OutOfOrder. Note that even under
OutOfOrder, iterations commit out of program order only if
there are conflicts.

3. ReductionPolicy takes a set of 〈var, op〉 pairs and applies
reduction as follows. Let Sc(x) denote the latest value of x in
the committed memory. Let oldSt(x) and newSt(x) denote
the values of x in the private memory of transaction t, at the
start and end of its execution. ALTER modifies the state de-
pending on the operation in consideration as follows. (1) if op
is idempotent, that is op ∈ (∨, ∧, max, min), then the commit-
ted memory state is updated as Sc(x) := Sc(x) op newSt(x).
(2) if op =+ then the committed state is updated as Sc(x) :=
Sc(x) + newSt(x) − oldSt(x). × is handled similarly. Our

framework currently only supports these 6 operations. The li-
brary also has partial support for programmer-defined reduction
operations but this is not fully tested and is not exposed as yet.

4. Finally, ChunkFactor takes a integer that defines the chunk
factor to be used. We omit this parameter in discussions below
and refer to it only when relevant.

Parameters Respecting ALTER Annotations
The following theorems assert that the ALTER annotations, which
represent constraints on the parallelism in loops, can be enforced
via certain selections of the runtime parameters.

Theorem 4.1. Executing a loop under ALTER with:

ConflictPolicy = RAW,
CommitOrderPolicy = OutOfOrder,
ReductionPolicy =R

respects the annotation (OutOfOrder, R).

Proof Sketch The OutOfOrder annotation specifies that loop
iterations are treated as transactions that commit subject to conflict
serializability. ALTER starts concurrent iterations on a consistent
memory snapshot and provides isolation for iterations by executing
each in its own address space. The RAW conflict policy guarantees
that a transaction t with location L in its read set will not commit
if a concurrent transaction that committed before t has L in its
write set, which is the criterion required for conflict serializability.
Reordering of iterations is enabled by the OutOfOrder ordering
policy.

Theorem 4.2. Executing a loop under ALTER with:

ConflictPolicy = WAW,
CommitOrderPolicy = OutOfOrder,
ReductionPolicy =R

respects the annotation (StaleReads, R).

Proof Sketch The StaleReads annotation specifies that loop it-
erations are treated as transactions that commit subject to snapshot
isolation. ALTER starts concurrent iterations on a consistent mem-
ory state and provides isolation for iterations by executing each in
its own address space. The WAW conflict policy guarantees that a
transaction t with location L in its write set will not commit if a
concurrent transaction that committed before t has L in its write
set, which is the criterion required for snapshot isolation.

Parameters Respecting Other Semantics
While our focus in this paper is to explore loop semantics that de-
part from ordinary execution models, ALTER can also be used to
implement well-known models such as safe speculative parallelism
and DOALL parallelism. This is asserted by the following theo-
rems:

Theorem 4.3. Executing a loop under ALTER with:

ConflictPolicy = RAW,
CommitOrderPolicy = InOrder,
ReductionPolicy = NONE

offers safe speculative parallelism (equivalent to sequential seman-
tics).

Proof Sketch The iterations commit InOrder while respecting
all RAW dependences, which implies that none of the dependences
in the original program are broken.



Theorem 4.4. Executing a loop under ALTER with:

ConflictPolicy = ∗,
CommitOrderPolicy = ∗,
ReductionPolicy =R

offers DOALL parallelism with a reduction R.

Proof Sketch As DOALL parallelism applies when there are
no dependences between iterations, the ConflictPolicy and
CommitOrderPolicy are not relevant. Nonetheless, reductions
can be supported using the ALTER framework.

While other combinations of the ALTER parameters also lead to
sensible execution models, we did not find an analogue for them
in practice or application for them in example programs. We leave
potential investigation of these models for future work.

4.3 Determinism
A salient feature of ALTER is that given a deterministic se-
quential program as input ALTER produces a deterministic par-
allel program. That is, every time the generated executable is
run with the same program input and the same values for
number of processes N , the chunk factor cf and configura-
tion parameters (ConflictPolicy, CommitOrderPolicy,
ReductionPolicy) it produces the same output so long as the
program terminates. If the program crashes or does not terminate
this also happens deterministically. The runtime avoids races by
enforcing runtime barriers.

Determinism follows from the following facts: (1) all concur-
rent processes have independent memory spaces, (2) no process
is allowed to execute join() until all processes have completed
their work, (3) processes commit their changes to the committed
memory state one after another in deterministic order, (4) updates
from the committed memory state to private memory spaces occur
only after all processes have committed, and (5) the same conflicts
are detected for every execution with the same inputs. Determinism
is a desirable property for a framework like ALTER that uses a dy-
namic annotation inference engine with test suite conformance as
the validation criterion. Determinism is desirable because the cor-
rectness of each test can be determined in a single execution.

5. Annotation Inference
In addition to implementing parallelism consistent with the pro-
grammer’s annotations, ALTER can also be used to infer a set of
annotations that are likely valid for a given loop. Because this in-
ference algorithm is unsound, it is important to use it carefully. We
discuss specific application scenarios in the next section.

The annotation inference works via a simple test-driven frame-
work. Given a program, ALTER creates many different versions,
each containing a single annotation on a single loop. Together, these
versions exhaustively enumerate the ways in which one could add
a single annotation to the program (details below). Then, ALTER

runs each of these programs on every input in the test suite. Be-
cause the ALTER runtime is deterministic, only one execution of
each test is needed. Those versions matching the output of the un-
modified sequential version (according to a program-specific cor-
rectness criterion) are presented to the user as annotations that are
likely valid.

To enumerate the candidate annotations, our current implemen-
tation works as follows. ALTER systematically explores values for
P and R (see Figure 3) by fixing the chunk factor at 16 and evalu-
ating all valid candidates for the other runtime parameters. For each
reduction R, a bounded search over reduction variables and oper-
ators is performed. The search is restricted to (i) apply one of six
reduction operators 〈+,×, max, min,∧,∨〉, and (ii) apply the same
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Figure 5. Performance impact of the chunk factor, for various in-
put sizes (numbers of points and clusters) on the K-means bench-
mark.

reduction operator (or lack thereof) to all stack variables1. Also a
search for a valid reduction is performed only if none of the anno-
tations of the form (P, ε) are valid.

After ascertaining valid annotations, an iterative doubling algo-
rithm is used to the find an appropriate chunk factor. Starting from
a candidate value of 1 the chunk factor is iteratively doubled until
a performance degradation is seen over two successive increments.
The candidate that led to the best performance is then chosen as
the chunk factor. Our results indicate that the chunk factor is de-
pendent only on the loop structure and not on the inputs. Figure 5
shows how performance varies with increasing chunk factors for
different inputs of K-means. As can be seen the best performing
chunk factor for all 4 inputs remains the same. Similar behavior is
observed for other benchmarks.

In addition to reporting the set of annotations that lead to valid
executions, ALTER also gives hints as to the cause of failure for an-
notations that are unsuccessful. For each annotation, the reported
outcome is one of the following: success, failure ∈ (crash, time-
out, high conflicts, output mismatch). Success represents the case
where the execution produces a valid output. Failure cases can be
classified into cases where no output is produced (crash, timeout)
and cases where an output is produced but it is either incorrect
(output mismatch) or is unlikely to lead to performance improve-
ments (high conflicts). A timeout is flagged if the execution takes
more than 10 times the sequential execution time. An execution is
flagged as having high conflicts if more than 50% of the attempted
commits fail. Both of these behaviors are correlated with perfor-
mance degradation and hence we deem them as failures.

6. Usage Scenarios
To explore concrete applications of ALTER in real-world contexts,
we consider three scenarios – manual parallelization, assisted par-
allelization, and automatic parallelization. While our primary target
is assisted parallelization, under certain circumstances ALTER can
also make sense for purely manual or automatic parallelization. We
summarize these scenarios in Table 1 and expand on them below.

Assisted parallelization In this scenario, a user is attempting
to parallelize a code base for which she has partial but incomplete
knowledge. For example, perhaps the user has authored part of the
system, but relies on third-party libraries as well. In such a situa-
tion, ALTER serves a natural role in assisting the user to parallelize

1 This is sufficient for our current benchmarks. It should be fairly straight-
forward to extend the search strategy to explore different reductions for
different variables. Because reduction variables are not allowed to interact,
either with each other or with the program variables, each variable can be
tested independently without leading to a combinatorial explosion.



Manual Parallelization Assisted Parallelization Automatic Parallelization
User has: deep understanding of code some familiarity with code little or no familiarity with code
Annotations are: written by hand inferred but checked by hand inferred and used as-is

ALTER serves as: 1) high-level parallelism library 1) set of hints to investigate further 1) temporary substitute for human parallelizer
2) tool for rapid prototyping 2) upper bound for discoverable parallelism 2) unsound parallelizer for tolerant environments

Table 1. Usage scenarios for ALTER. While ALTER is intended primarily for assisted parallelization, it could also find application in purely
manual or automatic parallelization.

the code. By evaluating various loop annotations via executions on
test suites, ALTER can suggest which models of parallelism are
likely to be valid and beneficial for each loop in the program. The
user can investigate these suggestions to determine whether or not
they are sound before integrating them into source base. In addi-
tion, ALTER’s suggestions could serve as a useful upper bound for
certain kinds of parallelism in the program. If ALTER does not find
likely parallelism in any loop, then perhaps a new algorithm will be
needed to leverage multicore hardware.

Manual parallelization This scenario applies to cases in which
the user of ALTER is authoring a new parallel program or is already
equipped with a deep understanding of an existing code base. In
this case, the user can think of ALTER as providing an API for ex-
ploiting known parallelism in the program. All of the annotations
are written by the user herself. The ALTER runtime system could be
shipped as part of a product, or applied only for internal prototyping
in order to quickly explore the speedups offered by various trans-
formations. In the latter case, the most beneficial transformations
may be re-written manually (without the ALTER runtime system)
to further customize and optimize the performance.

Automatic parallelization In the final scenario (which remains
largely hypothetical), ALTER is applied as an autonomous paral-
lelization engine. Perhaps this could make sense for obscure legacy
codes, in which it is unduly expensive for new developers to fully
understand the intricacies of the implementation. ALTER could be
used to infer parallel annotations by evaluating them for correctness
across a large and rigorous test suite. In the case of legacy codes,
test suites often provide the only arbiter as to whether changes in
the environment have violated implicit assumptions of the code.
Just as many human intuitions about very complex systems can
only be verified via testing, there might be cases where it is not
unreasonable to utilize testing as the sole correctness criterion for
a compiler-directed transformation.

Nonetheless, to make sense in a production environment, ad-
ditional flexibility is likely needed to embrace ALTER as an auto-
matic parallelization engine. For example, if parallel speedups are
urgently needed to proceed with whole-system prototyping (e.g., to
evaluate the user experience of a new gaming engine), then perhaps
ALTER could be applied temporarily until a human developer has
a chance to step in and laboriously verify the changes. Alternately,
there may be end-user applications where speed is more important
than correctness. For example, one may desire a low-latency pre-
view of multimedia content before the official decoder has finished
rendering it, even if the preview has a chance of being wrong. Or,
on a mobile platform, if the battery is low one may want to quickly
execute some application (with some chance of failure) rather than
initiating a slower execution that is guaranteed to timeout due to a
dead battery.

7. Experimental Evaluation
We evaluate ALTER with algorithms from Berkeley’s dwarfs [4]
and sequential versions of the STAMP [28] benchmarks (see Ta-
ble 2). A dwarf represents an algorithmic method that captures
a commonly used pattern of computation. We utilize all dwarfs
for which we could find a good representative algorithm and all
STAMP benchmarks that we could get to compile on Windows2.

Table 2 describes the benchmarks used. Our transformations
target a single loop in each benchmark. For many benchmarks
the main computation happens in a single loop nest; we report
results for the nesting level that leads to the most parallelism.
For benchmarks containing multiple important loops, the targeted
loop is indicated in the description column of the table. For each
benchmark, we use test inputs to infer the annotations and then
use a larger input (shown in bold) to measure performance. All
performance measurements are conducted on an 8-core Intel Xeon
machine (2× quad core at 2.4GHz) with a 64-bit Windows Server
2008 operating system.

7.1 Results of Annotation Inference
We utilized the annotation inference algorithm to infer all anno-
tations used in our evaluation. Correctness of the program out-
put was evaluated on a case-by-case basis. For 4 of the bench-
marks (Labyrinth, Genome, GSdense, GSsparse) assertions in the
code validate the output. For the remaining programs, we utilized
a program-specific output validation script, which often made ap-
proximate comparisons between floating-point values.

The results from the inference algorithm are reported in Ta-
ble 3. In addition to the models exposed by our language we also
check if the program can be parallelized by some existing auto-
parallelization techniques. We add a check in join() to see if the
loop has any loop-carried dependences. The results of this check
are shown in column dep. We also check to see if the loop is
amenable to thread level speculation (TLS). The outcome of this
check could be one among (success, failure ∈ (crash, timeout, high
conflicts)).

Interestingly, we find that in all cases a single test is suffi-
cient to identify incorrect annotations. We find that when TLS,
OutOfOrder or StaleReads fail, they fail either due to time-
outs or due to a large number of conflicts. The only exception is Ag-
gloClust, where the application crashes under OutOfOrder and
TLS. In these two cases the machine runs out of memory (due to
very large read sets). We find that an incorrect reduction leads ei-
ther to an invalid output or a timeout. An interesting case is the +
reduction for SG3D. The convergence check in this algorithm looks
for max∀i(errori) < threshold so a max reduction works. A +
leads to a check of the form

∑
∀i(errori) < threshold, which

also produces a valid output but convergence takes much longer.
Other reductions lead to a deviation of ±0.01% from sequential
output in some entries.

Overall we find that all but one benchmark (Labyrinth) can
be parallelized with ALTER. Both SSCA2 and Genome, which are
known to be amenable to OutOfOrder [28], also lead to a correct
execution under StaleReads. This is because all variables that
are read in the loop are also written to. Hence it is sufficient to
check for WAW conflicts alone and no read instrumentation is
required. Though it is known that K-means can be parallelized with
OutOfOrder we find that it leads to a very slow execution. We
find that the only practical execution model for K-means is to use a
combination of StaleReads and + reduction.

2 Compiling STAMP benchmarks on Windows requires a substantial man-
ual effort. We succeeded in compiling 4 benchmarks out of the 8 bench-
marks in the suite; we present full results for these 4 cases.



BENCHMARK DESCRIPTION LOOP
WGT

INPUT SIZE
(inference; benchmarking)

Genome
(STAMP)

The genome sequencing algorithm from STAMP is described in detail in [28]. We
parallelize the first step (remove duplicate sequences).

89% 4M segments;
16M segments

SSCA2
(STAMP)

This benchmark includes a set of graph kernels (details in STAMP [28]). We focus on
the second loop in kernel 1.

76%∗ 18; 19; 20 (problem scale)

K-means
(STAMP)

The K-means algorithm is a popular clustering algorithm (we use the implementation
from STAMP [28]). The main loop in the algorithm recomputes the association of
points to clusters until convergence (see Figure 2).

89% 16K pts, 512 clusts; 16K
pts, 1024 clusts; 64K pts,
512 clusts; 64K pts, 1024
clusts

Labyrinth
(STAMP)
uses ALTERVector

This algorithm does an efficient routing through a mesh (details in STAMP [28]). An
ALTERVector is used here.

99% 128 × 128 × 3 grid, 128
paths; 256× 256× 5
grid, 256 paths

AggloClust
(Branch and bound)
uses ALTERList

The agglomerative clustering algorithm utilizes a special tree (k-d tree) to efficiently
bound nearest neighbor searches in a multi-dimensional space. Our implementation
is adapted (C++ instead of Java) from Lonestar [22]. We simplify the original imple-
mentation by not updating the bounding boxes on k-d tree node deletions. We focus
on the main loop of the program ([22] has the pseudo-code). As the loop iterates over
a list we replace the sequential list with an ALTERList.

89% 100K pts; 1M pts

GSdense
(Dense linear algebra)

We use the Gauss-Seidel iterative method [31] for solving a system of equations (refer
Figure 1). Depending on whether the A matrix is sparse or dense it uses two different
representations of the matrix. As noted before, violating some true dependences still
preserves the overall functionality and provides the same convergence guarantees.

100% 10000× 10000;
20000× 20000

GSsparse
(Sparse linear algebra)

100% 20000× 20000;
40000× 40000

Floyd
(Dynamic
programming)

The Floyd-Warshall algorithm uses a triply nested loop (on k, i, and j) within which
it repeatedly applies the relaxation path[i][j] := min(path[i][j], path[i][k] +
path[k][j]). Though the loop has a tight dependence chain, it turns out that even
if some true dependences are violated, all possible paths between each pair of vertices
are still evaluated [40].

100% 1000 nodes;
2000 nodes

SG3D
(Structured grids)

The algorithm uses a 27-point three-dimensional stencil computation to solve a partial
differential equation [13]. A triply-nested inner loop iterates over points in 3D space,
updating their value and tracking the maximum change (error) that occurs at any
point. An outer loop tests for convergence by checking if the error is less than a
given threshold. While the stencil computations can tolerate stale reads, the update of
the error value must not violate any dependences, or the execution could terminate
incorrectly.

96% 64× 64× 64;
128× 128× 128

BarnesHut
(N-body methods)
uses ALTERList

The Barnes-Hut algorithm uses a quad-tree data structure to solve the N-body prob-
lem. We use the implementation from Olden [10]. We parallelize the main loop that
iterates over a list by transforming it to use an ALTERList.

99.6% 4096 particles;
8192 particles

FFT
(Spectral methods)

We utilize the two-dimensional iterative FFT solver from [1]. 100%∗ 1024, 2048

HMM
(Graphical models)

We use the Hidden Markov Model solver from [1]. 100% 512, 1024

∗ FFT has two identical loops each taking 50% of the execution time. The annotations inferred and speedups obtained apply to
both these loops. SSCA2 has an initial random input generation step. We do not include the time taken for random input generation.

Table 2. Benchmarks used for evaluation. Eight benchmarks are drawn from Berkeley’s dwarfs; the algorithm name is subtitled with the
dwarf that it represents. Four benchmarks are drawn from STAMP. The “LOOP WGT” (loop weight) column indicates the fraction of the
program’s runtime that is spent in the loop targeted by ALTER.

Benchmark Dep TLS OutOrd Stale Reduction
Genome Yes success success success N/A
SSCA2 Yes timeout success success N/A
K-means Yes h.c. h.c. h.c. +
Labyrinth Yes h.c. h.c. h.c. N/A
AggloClust Yes crash crash success N/A
GSdense Yes timeout timeout success N/A
GSsparse Yes timeout timeout success N/A
Floyd Yes timeout timeout success N/A
SG3D Yes h.c. h.c. h.c. max/+
BarnesHut No success success success N/A
FFT No success success success N/A
HMM No success success success N/A

Table 3. Results of annotation inference. The table shows whether
there is a dependence carried by the loop (Dep) as well as the re-
sults for thread-level speculation (TLS), OutOfOrder execution
(OutOrd), and StaleReads (Stale). High conflict results are ab-
breviated as h.c. Reductions are shown where applicable.

Benchmark cf Transaction
Count

RW Set
/ Trans.

Retry
Rate

Genome-StaleReads 4096 32768 16 0.2%
Genome-OutOfOrder 4096 32768 89 0.2%
Genome-TLS 4096 32768 90 0.16%
SSCA2-StaleReads 64 16384 277 3.5%
SSCA2-OutOfOrder 64 16384 6340 3.5%
K-means-1024 4 65552 136 3.4%
K-means-512 4 81940 136 6.3%
AggloClust 64 46608 28 3.6%
GSdense 32 2720 62 0
GSsparse 32 12580 32 0
Floyd 256 24576 428 0
SG3D 4 23560 208 0

Table 4. Instrumentation details for representative benchmarks.
The columns show the chunk factor (cf), the number of chunks
(transactions) executed (Transaction Count), the average size of
the read and write set, in words, per transaction (RW Set / Trans.),
and the average rate at which iterations fail to commit (Retry rate).
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Figure 9. Dense and sparse linear algebra. The plot compares
results with manual parallelization for both dense and sparse cases.

Four other benchmarks (GSdense, GSsparse, Floyd and SG3D)
are tolerant to stale reads. Among these, SSG3D needs a combina-
tion of StaleReads and reduction for parallelization while the
other three do not need reduction. Only three benchmarks have no
loop carried dependences and (of those with dependences) only one
is amenable to efficient speculation.

7.2 Performance Results
The results for all annotations that lead to a valid execution during
testing are shown in Figures 6 through 13. Each figure shows the
speedup over the original sequential execution (without ALTER) for
the loop nest being parallelized.

A maximum speedup of up to 4.5X is observed (ignoring “triv-
ial” benchmarks with no loop carried dependences) with 8 cores.
For the two benchmarks (Genome and SSCA2) that are amenable
to multiple annotations, we find that StaleReads leads to much
better performance than OutOfOrder. This is because enforcing
StaleReads does not need read instrumentation. We report the
size of the read and write sets per transaction as well as retry rates
in Table 4. As can be seen by comparing the amount of instrumen-
tation for OutOfOrder and StaleReads for a given bench-
mark, there is a much larger number of reads (instrumented by
OutOfOrder) than writes (instrumented by both OutOfOrder
and StaleReads) within a transaction3. Further, we find that for

Genome TLS performs nearly as well as OutOfOrder but not as
well as StaleReads.

We find that the speedup obtained for K-means depends on
the number of clusters to be formed. The larger the number of
clusters to be formed, the fewer the conflicts. As can be seen
from Figure 8, when the number of clusters decreases from 1024
to 512 the speedup comes down from 2.8X to 1.7X. So long as
the probability that two points map to the same cluster is low, the
algorithm should see a speedup. Further note that while the speedup
varies, the best parallelism policy or chunk factor does not change
with input. As seen before, both inference and evaluation inputs
perform best at the same chunk factor.

Benchmarks GSdense, GSsparse, and Floyd when executed un-
der StaleReads lead to no conflicts. This is because while
these loops have many RAW dependences there are no loop-carried
WAW dependences. We also find that breaking RAW dependences
hardly increases the number of iterations needed to converge (GS-
dense increases from 16 to 17, while GSsparse increases from 20 to
21). Unfortunately, both GSdense and GSsparse are memory bound
and hence do not scale well beyond 4 cores. Like the above bench-

3 Though STAMP benchmarks come along with instrumentation hints, we
ignore them and use our own static analysis to embed instrumentation in
the program. Because this analysis is automatic and does not depend on
any special knowledge of the program, the overheads observed are likely to
generalize to other programs.
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marks SG3D leads to no conflicts under StaleReads with reduc-
tion. Among max and + reduction we find that using + degrades
performance as it leads to a significant increase in the number of
iterations to converge (1670 to 2752).

Among the three benchmarks that have no loop carried depen-
dences, ALTER provides reasonable speedups for HMM and bar-
nesHut but slows down FFT. The slowdown on FFT is due to high
instrumentation overhead. FFT uses a complex data type, which
results in many copy constructors that are instrumented by ALTER.
This effect could be avoided by a more precise alias analysis or via
conversion of complex types to primitive types.

7.3 Comparison with Manual Parallelization
Finally, we manually parallelize two of the benchmarks in order
to provide a realistic parallel baseline for ALTER. We manually
implement a multi-threaded version of Gauss-Seidel that mimics
the runtime behavior of StaleReads by maintaining multiple
copies of XVector that are synchronized in exactly the same way
as a chunked execution under ALTER. We also parallelize K-means
using threads and fine-grained locking.

As shown in Figure 9, ALTER performs comparably to manual
parallelization on Gauss-Seidel. However, on K-means, it performs
20-47% slower than manual parallelization (considering all tests
between 4 and 8 cores) as shown in Figure 8. This slowdown is due
to the overhead of the ALTER runtime system as it explores par-
allelism via optimistic, coarse-grained execution rather than pes-
simistic fine-grained locking.

8. Related Work
Parallelizing compilers Compilers rely on static analysis to iden-
tify parts of the program that can be parallelized. Often they target
simple forms of loop parallelism like DOALL and pipeline parallel
loops or loops with simple reductions [17]. Parallelizing compilers
are typically restricted by the accuracy of static analyses such as
data dependence analysis and alias analysis [20]. Richer forms of
parallelism can be identified via commutativity analysis [2, 38] that
detects if two program tasks commute with each other or not. The
analysis needs to be able to prove the equivalence of the final mem-
ory state with either order of execution of the tasks before applying
a parallelizing transformation. One of the contributions of ALTER

is to provide a test-driven framework to identify whether iterations
of a loop are likely to commute with each other.

The classic compiler transformation of privatization is similar
to StaleReads in that it enables loop iterations to operate on
local copies of global variables [26, 34]. However, there is a key
difference between privatization and StaleReads: privatization
does not allow loop iterations to communicate via the privatized
variables. The key aspect of StaleReads is that loop iterations
do communicate, but the values read might be stale, reflecting the
update of an earlier iteration rather than the most recent one.

Implicitly parallel programming Rather than providing ex-
plicit directives as to the allowable parallelism, as in OpenMP
or ALTER, an alternative approach is to utilize an implicitly par-
allel programming model that enables the compiler to automati-
cally identify and exploit the parallelism [19]. Of the many efforts



in this space, some have also proposed an annotation language
to prevent spurious dependences from inhibiting parallelization.
Bridges et al. advocate using annotations for commutative func-
tions and non-deterministic branches to enable parallelization of
legacy code [7]; their “commutative” annotation plays a similar role
to our OutOfOrder annotation in allowing certain dependences
to be reordered. In the Paralax infrastructure [45], the programmer
annotates functions, function arguments, and variables with extra
information regarding dependences; for example, a “kill” annota-
tion indicates that a given variable is no longer live. The system can
infer likely annotations using a dynamic analysis. However, there
is a key difference between this inference algorithm and ours: the
Paralax system aims to infer annotations that precisely describe the
sequential execution, but could not be identified without testing. In
contrast, our testing procedure identifies opportunities to violate the
sequential semantics while maintaining end-to-end functionality.

Parallel runtime systems Systems such as OpenMP allow the
programmer to indicate parallelism via a set of annotations, in a
manner analogous to ALTER. However, the parallelism offered by
ALTER can not be implemented using OpenMP directives. While
OpenMP supports DOALL loops and privatized variables, ALTER

provides isolated and potentially stale reads of state that is commu-
nicated between loop iterations. ALTER is also very different from
OpenMP in that (i) ALTER supports various notions of conflicts
and provides runtime support to roll back and retry iterations, (ii)
it efficiently and automatically handles full state replication with-
out requiring annotations for shared and private variables, and (iii)
ALTER is deterministic: for a given thread count and chunk fac-
tor, ALTER always produces the same output for a given input,
while parallelization with OpenMP may admit non-deterministic
data races.

STAPL [3] is a runtime library that provides parallel algorithms
and containers for collection classes; it is a superset of the stan-
dard template library (STL) in C++. STAPL overlaps our goal of
providing customized collection classes that are suitable for paral-
lelization. However, this is only a small piece of our overall system.
We utilize the custom collection classes to enable a new execution
model and a deterministic parallel runtime for discovering hidden
parallelism via testing.

We note that there are other parallelization frameworks that use
a process-based model to ensure isolation. These include (1) the
behavior oriented parallelization framework [15] that uses process-
based isolation for speculative parallelization, and (2) the Grace
runtime system [6] that forks off threads as processes to avoid
common atomicity related concurrency errors.

Test-driven parallelization Closely related to our work is the
QuickStep system for parallelizing programs with statistical ac-
curacy tests [29]. QuickStep searches for DOALL parallelism by
annotating loops with OpenMP directives and evaluating if the
resulting parallelization is acceptably accurate for the inputs in
the test suite. Quickstep also explores synchronization, replica-
tion, and caching transformations that could improve accuracy or
performance, and provides metrics and tools to help programmers
find an acceptable parallelization. Both systems share the philos-
ophy of violating dependences to enable new parallelism detec-
tion. One difference is in the run-time system: while QuickStep
utilizes OpenMP, we propose a new runtime system that enables
the StaleReads execution model and other benefits (see above).
A second difference is that ALTER is designed to provide deter-
ministic execution and freedom from data races, while QuickStep is
designed to generate potentially nondeterministic parallel programs
that may contain data races. As a consequence, ALTER uses a single
execution to verify correctness on a given input, while QuickStep
performs multiple test executions on the same input to determine

if a candidate parallelization respects the accuracy bounds with ac-
ceptable probability.

Profile-driven and speculative parallelization Profile driven
parallelization tools augment compiler driven transformations by
using profile inputs to identify DoAll and pipeline parallelism
in programs [30, 41, 43]. Speculative parallelization [11, 15, 27,
33, 35, 44] is a related form of parallelization that can be enabled
by profile-driven tools. Execution of speculatively parallelized pro-
grams typically requires support for thread level speculation either
in hardware [21, 39] or in software [11, 15, 27, 35, 42]. To the
best of our knowledge, all existing speculative and profile-driven
tools that exploit inter-iteration parallelism in loops are restricted
to guarantee sequential semantics for the loop. By contrast, ALTER

exposes and exploits alternative semantics, including the ability to
permit (bounded) stale reads for certain values while nonetheless
preserving overall functionality. In this way, the StaleReads ex-
ecution model is fundamentally different from speculation. While
frameworks such as behavior oriented parallelism [15] may have
similar goals at the abstract level, thus far (in their concrete form)
they have utilized speculation that respects program dependences.

Transactional memory systems Software transactions have
been proposed as an alternative to traditional lock-based program-
ming. A transactional memory system [18, 25] is needed to sup-
port concurrent execution of software transactions. Transactional
memory systems try to provide conflict serializability as the cor-
rectness criterion, however the exact semantics provided by most
STMs is captured better by a correctness guarantee referred to
as opacity [16]. Recently, researchers have also explored snap-
shot isolation as a correctness criterion in STMs [14, 37]; how-
ever, the experiments to date have utilized a transactional pro-
gramming model where the programmer thinks in terms of explicit
transactions. ALTER targets existing software and helps to identify
whether loops can tolerate stale reads and reordering of iterations.

Language constructs for expressing parallelism Many re-
searchers have investigated new programming language constructs
for expressing parallelism. Most of these constructs introduce
richer semantics that cannot be detected by existing paralleliza-
tion tools. The Galois programming system introduces constructs
to iterate over sets (optimistic iterators) and allows programmers to
specify conditions under which methods commute [23, 24]. With
these constructs a programmer can write loops whose iterations can
execute optimistically in parallel and commit out of order as long
as there are no commutativity violations. The revisions program-
ming model [8] exposes language constructs through which a pro-
grammer can assign special isolation types to variables and specify
merge functions for them. These merge functions are applied at
the end of a parallel section of computation. ALTER’s contribution
is in determining if existing sequential programs are amenable to
richer forms of parallelism, without intervention on the part of the
programmer. It also proposes the StaleReads execution model,
which to our knowledge has not been used as a general approach
for loop parallelization.

9. Conclusions
Despite decades of research on automatic parallelization, the re-
sults achievable by a compiler are rarely comparable to that of a
human. We believe that one of the primary limitations holding com-
pilers back is their conservative treatment of memory dependences.
Though humans can and do re-arrange dependences – which are
often artifacts of the implementation, or non-essential elements of
the algorithm – compilers, for the most part, do not.

In this paper, we take a first step towards bridging this gap by
proposing ALTER: a system that violates certain memory depen-
dences in order to expose and exploit parallelism in loops. We em-



phasize that ALTER is not intended to completely replace a human;
as its inferences are unsound, we still rely on human judgement to
drive the parallelization process. However, ALTER could greatly as-
sist the developer by providing a new set of parallelism primitives
as well as suggestions regarding their most effective use.

Our evaluation indicates that the parallelism exploited by AL-
TER is beyond the reach of existing static and dynamic tools. In
particular, for one third of our benchmarks, the use of snapshot
isolation – allowing stale reads within loops – enables parallel ex-
ecution even when prior techniques such as speculative parallelism
and out-of-order commit do not.
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