
Scaling Enumerative Program Synthesis
via Divide and Conquer ?

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa??

University of Pennsylvania

Abstract. Given a semantic constraint specified by a logical formula,
and a syntactic constraint specified by a context-free grammar, the Syntax-
Guided Synthesis (SyGuS) problem is to find an expression that satisfies
both the syntactic and semantic constraints. An enumerative approach
to solve this problem is to systematically generate all expressions from
the syntactic space with some pruning, and has proved to be surprisingly
competitive in the newly started competition of SyGuS solvers. It performs
well on small to medium sized benchmarks, produces succinct expressions,
and has the ability to generalize from input-output examples. However,
its performance degrades drastically with the size of the smallest solution.
To overcome this limitation, in this paper we propose an alternative
approach to solve SyGuS instances.
The key idea is to employ a divide-and-conquer approach by separately
enumerating (a) smaller expressions that are correct on subsets of inputs,
and (b) predicates that distinguish these subsets. These expressions and
predicates are then combined using decision trees to obtain an expression
that is correct on all inputs. We view the problem of combining expressions
and predicates as a multi-label decision tree learning problem. We propose
a novel technique of associating a probability distribution over the set of
labels that a sample can be labeled with. This enables us to use standard
information-gain based heuristics to learn compact decision trees.
We report a prototype implementation eusolver. Our tool is able to
match the running times and the succinctness of solutions of both standard
enumerative solver and the latest white-box solvers on most benchmarks
from the SyGuS competition. In the 2016 edition of the SyGuS competition,
eusolver placed first in the general track and the programming-by-
examples track, and placed second in the linear integer arithmetic track.

1 Introduction

The field of program synthesis relates to automated techniques that attempt to
automatically generate programs from requirements that a programmer writes.
It has been applied to various domains such as program completion [21], pro-
gram optimization, and automatic generation of programs from input-output
examples [7], among others. Recently, Syntax-Guided Synthesis (SyGuS) has been
? This research was supported by NSF Expeditions award CCF 1138996 and by the
Simons Investigator award.

?? This work was done when the author was a student at the University of Pennsylvania.
The author is currently employed at Microsoft Corp.

proposed as a back-end exchange format and enabling technology for program
synthesis [2]. The aim is to allow experts from different domains to model their
synthesis problems as SyGuS instances, and leverage general purpose SyGuS solvers.

In the SyGuS approach, a synthesis task is specified using restrictions on both
the form (syntax) and function (semantics) of the program to be synthesized:
(a) The syntactic restrictions are given in terms of a context-free grammar from
which a solution program may be drawn. (b) The semantic restrictions are
encoded into a specification as an SMT formula. Most SyGuS solvers operate
in two cooperating phases: a learning phase in which a candidate program is
proposed, and a verification phase in which the proposal is checked against the
specification. SyGuS solvers can be broadly categorized into two kinds: (a) black-
box solvers, where the learning phase does not deal with the specification directly,
but learns from constraints on how a potential solution should behave on sample
inputs points [2, 18, 23]; and (b) white-box solvers, which attempt learn directly
from the specification, generally using constraint solving techniques [3, 17].

The enumerative solver [2] placed first and second in the SyGuS competition
2014 and 2015, respectively. It maintains a set of concrete input points, and in
each iteration attempts to produce an expression that is correct on these concrete
inputs. It does so by enumerating expressions from the grammar and checking if
they are correct on the input points, while pruning away expressions that behave
equivalently to already generated expressions. If an expression that is correct
on the input points is found, it is verified against the full specification. If it is
incorrect, a counter-example point is found and added to the set of input points.

Though the enumerative strategy works well when the solutions have small
sizes, it does not scale well. The time take to explore all potential solutions up
to a given size grows exponentially with the size. To overcome this scalability
issue, we introduce a divide-and-conquer enumerative algorithm.

The divide-and-conquer enumerative approach is based on this insight: while
the full solution expression to the synthesis problem may be large, the important
individual parts are small. The individual parts we refer to here are: (a) terms
which serve as the return value for the solution, and (b) predicates which serve
as the conditionals that choose which term is the actual return value for a given
input. For example, in the expression if x ≤ y then y else x, the terms are x
and y, and the predicate is x ≤ y. In this example, although the full expression
has size 6, the individual terms have size 1 each, and the predicate has size 3.
Hence, the divide-and-conquer enumerative approach only enumerates terms and
predicates separately and attempts to combine them into a conditional expression.

To combine the different parts of a solution into a conditional expression, we
use the technique of learning decision trees [4, 16]. The input points maintained
by the enumerative algorithm serve as the samples, the predicates enumerated
serve as the attributes, and the terms serve as the labels. A term t is a valid
label for a point pt if t is correct for pt. We use a simple multi-label decision tree
learning algorithm to learn a decision tree that classifies the samples soundly,
i.e., for each point, following the edges corresponding to the attribute values (i.e.,
predicates) leads to a label (i.e., term) which is correct for the point.

2

Round no. Enumerated expressions Candidate Expression Point added
1 0 0 {x 7→ 1, y 7→ 0}
2 0, 1 1 {x 7→ 0, y 7→ 2}
3 0, 1, x, y, . . ., x+ y, x+ y {x 7→ 1, y 7→ 2}

. . .
n 0, . . . , if x ≤ y then y else x if x ≤ y then y else x

Table 1: Example run of the basic enumerative algorithm

To enhance the quality of the solutions obtained, we extend the basic divide-
and-conquer algorithm to be an anytime algorithm, i.e., the algorithm does not
stop when the first solution is found, and instead continues enumerating terms
and predicates in an attempt to produce more compact solutions. Decomposing
the verification queries into branch-level queries helps in faster convergence.
Evaluation. We implemented the proposed algorithm in a tool eusolver and
evaluated it on benchmarks from the SyGuS competition. The tool was able to
perform on par or better than existing solvers in most tracks of the 2016 SyGuS
competition, placing first in the general and programming-by-example tracks, and
second in the linear-integer-arithmetic track. In the general and linear-integer-
arithmetic tracks, eusolver’s performance is comparable to the state-of-the-art
solvers. However, in the programming-by-example track, eusolver performs
exceptionally well, solving 787 of the 852 benchmarks, while no other tool solved
more than 39. This exceptional performance is due to eusolver being able to
generalize from examples like other enumerative approaches, while also being
able to scale to larger solution sizes due to the divide-and-conquer approach.

Further, to test the anytime extension, we run eusolver on 50 ICFP bench-
marks with and without the extension. Note that no previous solver has been
able to solve these ICFP benchmarks. We observed that the anytime extension
of the algorithm was able to produce more compact solutions in 18 cases.

2 Illustrative Example
S ::= T | if (C) then T else T
T ::= 0 | 1 | x | y | T + T
C ::= T ≤ T | C ∧ C | ¬ C
Fig. 1: Grammar for linear integer
expressions

Consider a synthesis task to generate an expres-
sion e such that: (a) e is generated by the gram-
mar from Figure 1. (b) e when substituted for
f , in the specification Φ, renders it true, where
Φ ≡ ∀x, y : f(x, y) ≥ x∧f(x, y) ≥ y∧(f(x, y) =
x∨f(x, y) = y). Note that the specification constrains f(x, y) to return maximum
of x and y. Here, the smallest solution expression is if x ≤ y then y else x.
Basic Enumerative Strategy.We explain the basic enumerative algorithm [23]
using Table 1. The enumerative algorithm maintains a set of input points pts
(initially empty), and proceeds in rounds. In each round, it proposes a candidate
solution that is correct on all of pts. If this candidate is correct on all inputs, it
is returned. Otherwise, a counter-example input point is added to pts.

The algorithm generates the candidate solution expression by enumerating
expressions generated by the grammar in order of size. In the first round, the
candidate expression proposed is the first expression generated (the expression 0)
as pts is empty. Attempting to verify the correctness of this expression, yields

3

Round no. Enumerated Enumerated Candidate Point addedTerms Predicates Expression
1 0 0 ∅ {x 7→ 1, y 7→ 0}
2 0, 1 1 ∅ {x 7→ 0, y 7→ 2}

3 0, 1, x, y 0 ≤ 0, . . . 0 ≤ y,
if 1 ≤ y then y else 1 {x 7→ 2, y 7→ 0}1 ≤ 0, . . . 1 ≤ y

4 0, 1, x, y 0 ≤ 0, . . .x ≤ y if x ≤ y then y else x

Table 2: Example run of the divide-and-conquer enumerative algorithm

a counter-example point {x 7→ 1, y 7→ 0}. In the second round, the expression
0 is incorrect on the point, and the next expression to be correct on all of
pts (the expression 1) is proposed. This fails to verify as well, and yields the
counter-example point {x 7→ 0, y 7→ 2}. In the third round, all expressions of
size 1 are incorrect on at least one point in pts, and the algorithm moves on
to enumerate larger expressions. After several rounds, the algorithm eventually
generates the expression if x ≤ y then y else x which the SMT solver verifies
to be correct. In the full run, the basic enumerative strategy (algorithm presented
in Section 3.1) generates a large number (in this case, hundreds) of expressions
before generating the correct expression. In general, the number of generated
expressions grows exponentially with the size of the smallest correct expression.
Thus, the enumerative solver fails to scale to large solution sizes.
Divide and Conquer Enumeration. In the above example, though the solu-
tion is large, the individual components (terms x and y, and predicate x ≤ y) are
rather small and can be quickly enumerated. The divide-and-conquer approach
enumerates terms and predicates separately, and attempts to combine them into
a conditional expression. We explain this idea using an example (see Table 2).

Similar to the basic algorithm, the divide-and-conquer algorithm maintains a
set of points pts, and works in rounds. The first two rounds are similar to the run
of the basic algorithm. In contrast to the basic algorithm, the enumeration stops
in the third round after 0, 1, x, and y are enumerated – the terms 1 and y are
correct on {x 7→ 1, y 7→ 0} and {x 7→ 0, y 7→ 2}, respectively, and thus together
“cover” all of pts. Now, to propose an expression, the algorithm starts enumerating
predicates until it finds a sufficient number of predicates to generate a conditional
expression using the previously enumerated terms. The terms and predicates are
combined into conditional expression by learning decision trees (see Section 4.2).
The candidate expression proposed in the third round is if 1 ≤ y then y else x
and the counter-example generated is {x 7→ 2, y 7→ 0} (see table). Proceeding
further, in the fourth round, the correct expression is generated. Note that this
approach only generates 4 terms and 11 predicates in contrast to the basic
approach which generates hundreds of expressions.

3 Problem Statement and Background
Let us fix the function to be synthesized f and its formal parameters params. We
write range(f) to denote the range of f . The term point denotes a valuation of
params, i.e., a point is an input to f .

4

Example 1. For the running example in this section, we consider a function to
be synthesized f of type Z×Z→ Z with the formal parameters params = {x, y}.
Points are valuations of x and y. For example, {x 7→ 1, y 7→ 2} is a point.

Specifications. SMT formulae have become the standard formalism for specify-
ing semantic constraints for synthesis. In this paper, we fix an arbitrary theory
T and denote by T [symbols], the set of T terms over the set of symbols symbols.
A specification Φ is a logical formula in a theory T over standard theory symbols
and the function to be synthesized f . An expression e satisfies Φ (e |= Φ) if
instantiating the function to be synthesized f by e makes Φ valid.

Example 2. Continuing the running example, we define a specification Φ ≡ ∀x, y :
f(x, y) ≥ x∧ f(x, y) ≥ y∧ f(x, y) = x∨ f(x, y) = y. The specification states that
f maps each pair x and y to a value that is at least as great as each of them and
equal to one of them, i.e., the maximum of x and y.

Grammars. An expression grammar G is a tuple 〈N , S,R〉 where: (a) the set
N is a set of non-terminal symbols, (b) the non-terminal S ∈ N is the initial
non-terminal, (c) R ⊆ N ×T [N ∪params] is a finite set of rewrite rules that map
N to T -expressions over non-terminals and formal parameters. We say that an
expression e rewrites to an incomplete expression e′ (written as e→G e′) if there
exists a rule R = (N, e′′) ∈ R and e′ is obtained by replacing one occurrence of
N in e by e′′. Let →∗G be the transitive closure of →. We say that an expression
e ∈ T [params] is generated by the grammar G (written as e ∈ [[G]]) if S →∗G e.
Note that we implicitly assume that all terms generated by the grammar have
the right type, i.e., are of the type range(f).

Example 3. For the running example, we choose the following grammar. The
set of non-terminals is given by N = {S, T, C} with the initial non-terminal
being S. The rules of this grammar are {(S, T), (S, if C then S else S)} ∪
{(T, x), (T, y), (T, 1), (T, 0), (T, T +T)}∪{(C, T ≤ T), (C,C ∧C), (C,¬C)}. This
is the standard linear integer arithmetic grammar used for many SyGuS problems.
This grammar is equivalent to the one from Figure 1.

The Syntax-Guided Synthesis Problem. An instance of the SyGuS problem
is given by a pair 〈Φ,G〉 of specification and grammar. An expression e is a
solution to the instance if e |= Φ and e ∈ [[G]].

Example 4. Continuing the running example, for the specification Φ from Exam-
ple 2 and the grammar from Example 3, one of the solution expressions is given
by f(x, y) ≡ if x ≤ y then y else x.

From our definitions, it is clear that we restrict ourselves to a version of the
SyGuS problem where there is exactly one unknown function to be synthesized,
and the grammar does not contain let rules. Further, we assume that our
specifications are point-wise. Intuitively, a specification is point-wise, if it only
relates an input point to its output, and not the outputs of different inputs.

5

Here, we use a simple syntactic notion of point-wise specifications, which we
call plain separability, for convenience. However, our techniques can be generalized
to any notion of point-wise specifications. Formally, we say that a specification is
plainly separable if it can be rewritten into a conjunctive normal form where each
clause is either (a) a tautology, or (b) each appearing application of the function
to be synthesized f has the same arguments.

Example 5. The specification for our running example Φ ≡ f(x, y) ≥ x∧f(x, y) ≥
y ∧ f(x, y) = x ∨ f(x, y) = y is plainly separable. For example, this implies that
the value of f(1, 2) can be chosen irrespective of the value of f on any other
point. On the other hand, a specification such as f(x, y) = 1⇒ f(x+ 1, y) = 1 is
neither plainly separable nor point-wise. The value of f(1, 2) cannot be chosen
independently of the value of f(0, 2).

The above restrictions make the SyGuS problem significantly easier. However,
a large fraction of problems do fall into this class. Several previous works address
this class of problem (see, for example, [3, 13, 17]).

Plainly separable specifications allow us to define the notion of an expression
e satisfying a specification Φ on a point pt. Formally, we say that e |= Φ � pt
if e satisfies the specification obtained by replacing each clause C in Φ by
PreC(pt)⇒ C. Here, the premise PreC(pt) is given by

∧
p∈params ArgC(p) = pt[p]

where ArgC(p) is the actual argument corresponding to the formal parameter p
in the unique invocation of f that occurs in C. We extend this definition to sets
of points as follows: e |= Φ � pts⇔

∧
pt∈pts e |= Φ � pt.

Example 6. For the specification Φ of the running example, the function given
by f(x, y) ≡ x+ y is correct on the point {x 7→ 0, y 7→ 3} and incorrect on the
point {x 7→ 1, y 7→ 2}

3.1 The Enumerative Solver

Algorithm 1 Enumerative Solver
Require: Grammar G = 〈N , S,R〉
Require: Specification Φ
Ensure: e s.t. e ∈ [[G]] ∧ e |= Φ

1: pts← ∅
2: while true do
3: for e ∈ enumerate(G, pts) do
4: if e 6|= Φ � pts then continue
5: cexpt← verify(e, Φ)
6: if cexpt = ⊥ then return e

7: pts← pts ∪ cexpt

The principal idea behind the enumerat-
ive solver is to enumerate all expressions
from the given syntax with some pruning.
Only expressions that are distinct with
respect to a set of concrete input points
are enumerated.
The full pseudo-code is given in Algo-
rithm 1. Initially, the set of points is set
to be empty at line 1. In each iteration,
the algorithm calls the enumerate pro-
cedure1 which returns the next element

from a (possibly infinite) list of expressions such that no two expressions in this
list evaluate to the same values at every point pt ∈ pts (line 3). Every expression
1 Note that enumerate is a coprocedure. Unfamiliar readers may assume that each
call to enumerate returns the next expression from an infinite list of expressions.

6

e in this list is then verified, first on the set of points (line 4) and then fully
(line 5). If the expression e is correct, it is returned (line 6). Otherwise, we pick
a counter-example input point (i.e., an input on which e is incorrect) and add
it to the set of points and repeat (line 7). A full description of the enumerate
procedure can be found in [2] and [23].

Theorem 1. Given a SyGuS instance (Φ,G) with at least one solution expression,
Algorithm 1 terminates and returns the smallest solution expression.

Features and Limitations. The enumerative algorithm performs surprisingly
well, considering its simplicity, on small to medium sized benchmarks (see [2, 23]).
Further, due to the guarantee of Theorem 1 that the enumerative approach pro-
duces small solutions, the algorithm is capable of generalizing from specifications
that are input-output examples. However, enumeration quickly fails to scale
with growing size of solutions. The time necessary for the enumerative solver to
generate all expressions up to a given size grows exponentially with the size.

4 The Divide-and-Conquer Enumeration Algorithm

Conditional Expression Grammars. We introduce conditional expression
grammars that separate an expression grammar into two grammars that generate:
(a) the return value expression, and (b) the conditionals that decide which
return value is chosen. These generated return values (terms) and conditionals
(predicates) are combined using if-then-else conditional operators.

A conditional expression grammar is a pair of grammars 〈GT , GP 〉 where:
(a) the term grammar GT is an expression grammar generating terms of type
range(f); and (b) the predicate grammar GP is an expression grammar generating
boolean terms. The set of expressions [[〈GT , GP 〉]] generated by 〈GT , GP 〉 is the
smallest set of expressions T [params] such that: (a) [[GT]] ⊆ [[〈GT , GP 〉]], and
(b) e1, e2 ∈ [[〈GT , GP 〉]]∧p ∈ [[GP]] =⇒ if p then e1 else e2 ∈ [[〈GT , GP 〉]]. Most
commonly occurring SyGuS grammars in practice can be rewritten as conditional
expression grammars automatically.

Example 7. The grammar from Example 3 is easily decomposed into a conditional
expression grammar 〈GT , GP 〉 where: (a) the term grammar GT contains only
the non-terminal T , and the rules for rewriting T . (b) the predicate grammar
GP contains the two non-terminals {T,C} and the associated rules.

Decision Trees. We use the concept of decision trees from machine learning
literature to model conditional expressions. Informally, a decision tree DT maps
samples to labels. Each internal node in a decision tree contains an attribute which
may either hold or not for each sample, and each leaf node contains a label. In
our setting, labels are terms, attributes are predicates, and samples are points.

To compute the label for a given point, we follow a path from the root of the
decision tree to a leaf, taking the left (resp. right) child at each internal node if
the attribute holds (resp. does not hold) for the sample. The required label is
the label at the leaf. We do not formally define decision trees, but instead refer
the reader to a standard text-book (see, for example, [4]).

7

Example 8. Figure 2 contains a decision tree in our setting, i.e., with attributes
being predicates and labels being terms. To compute the associated label with
the point pt ≡ {x 7→ 2, y 7→ 0}: (a) we examine the predicate at the root node,
i.e., y ≤ 0 and follow the left child as the predicate hold for pt; (b) examine the
predicate at the left child of the root node, i.e, x ≤ y and follow the right child
as it does not hold; and (c) return the label of the leaf x+ y.

y ≤ 0

x ≤ y

0 x+ y

y

Fig. 2: Sample decision tree

The expression expr(DT) corresponding to a de-
cision tree DT is defined as: (a) the label of the
root node if the tree is a single leaf node; and
(b) if p then expr(DTL) else expr(DTY) where
p is the attribute of the root node, and DTL and
DTY are the left and right children, otherwise.
Decision tree learning is a technique that learns a

decision tree from a given set of samples. A decision tree learning procedure
is given: (a) a set of samples (points), (b) a set of labels (terms), along with a
function that maps a label to the subset of samples which it covers; and (c) a
set of attributes (predicates). A sound decision tree learning algorithm returns
a decision tree DT that classifies the points correctly, i.e., for every sample pt,
the label associated with it by the decision tree covers the point. We use the
notation LearnDT to denote a generic, sound decision tree learning procedure.
The exact procedure we use for decision tree learning is presented in Section 4.2.

4.1 Algorithm

Algorithm 2 presents the full divide-and-conquer enumeration algorithm for
synthesis. Like Algorithm 1, the divide-and-conquer algorithm maintains a set of
points pts, and in each iteration: (a) computes a candidate solution expression
e (lines 3-10); (b) verifies and returns e if it is correct (lines 10 and 11); and
(c) otherwise, adds the counter-example point into the set pts (line 12).

However, the key differences between Algorithm 2 and Algorithm 1 are in the
way the candidate solution expression e is generated. The generation of candidate
expressions is accomplished in two steps.
Term solving. Instead of searching for a single candidate expression that is
correct on all points in pts, Algorithm 2 maintains a set of candidate terms terms.
We say that a term t covers a point pt ∈ pts if t |= Φ � pt. The set of points that a
term covers is computed and stored in cover[t] (line 15). Note that the algorithm
does not store terms that cover the same set of points as already generated terms
(line 16). When the set of terms terms covers all the points in pts, i.e., for each
pt ∈ pts, there is at least one term that is correct on pt, the term enumeration is
stopped (while-loop condition in line 4).
Unification and Decision Tree Learning. In the next step (lines 6-9), we
generate a set of predicates preds that will be used as conditionals to combine the
terms from terms into if-then-else expressions. In each iteration, we attempt to
learn a decision tree that correctly labels each point pt ∈ pts with a term t such
that pt ∈ cover[t]. If such a decision tree DT exists, the conditional expression

8

expr(DT) is correct on all points, i.e., expr(DT) |= Φ � pts. If a decision tree does
not exist, we generate additional terms and predicates and retry.
Algorithm 2 DCSolve: The divide-and-conquer enumeration algorithm
Require: Conditional expression grammar G = 〈GT , GP 〉
Require: Specification Φ
Ensure: Expression e s.t. e ∈ [[G]] ∧ e |= Φ

1: pts← ∅
2: while true do
3: terms← ∅; preds← ∅; cover← ∅; DT = ⊥
4: while

⋃
t∈terms cover[t] 6= pts do . Term solver

5: terms← terms ∪NextDistinctTerm(pts, terms, cover)
6: while DT = ⊥ do . Unifier
7: terms← terms ∪NextDistinctTerm(pts, terms, cover)
8: preds← preds ∪ enumerate(GP , pts)
9: DT ← LearnDT(terms, preds)
10: e← expr(DT); cexpt← verify(e, Φ) . Verifier
11: if cexpt = ⊥ then return e

12: pts← pts ∪ cexpt
13: function NextDistinctTerm(pts, terms, cover)
14: while True do
15: t← enumerate(GT , pts); cover[t]← {pt | pt ∈ pts ∧ t |= Φ � pt}
16: if ∀t′ ∈ terms : cover[t] 6= cover[t′] then return t

Remark 1. In line 7, we generate additional terms even though terms is guar-
anteed to contain terms that cover all points. This is required to achieve semi-
completeness, i.e., without this, the algorithm might not find a solution even if
one exists.

Theorem 2. Algorithm 2 is sound for the SyGuS problem. Further, assuming a
sound and complete LearnDT procedure, if there exists a solution expression,
Algorithm 2 is guaranteed to find it.

The proof of the above theorem is similar to the proof of soundness and partial-
completeness for the original enumerative solver. The only additional assumption
is that the LearnDT decision tree learning procedure will return a decision tree
if one exists. We present such a procedure in the next section.

4.2 Decision Tree Learning

The standard multi-label decision tree learning algorithm (based on ID3 [16]) is
presented in Algorithm 3. The algorithm first checks if there exists a single label
(i.e., term) t that applies to all the points (line 1). If so, it returns a decision
tree with only a leaf node whose label is t (line 1). Otherwise, it picks the best
predicate p to split on based on some heuristic (line 3). If no predicates are left,
there exists no decision tree, and the algorithm returns ⊥ (line 2). Otherwise, it
recursively computes the left and right sub-trees for the set of points on which
p holds and does not hold, respectively (lines 4 and 5). The final decision tree
is returned as a tree with a root (with attribute p), and positive and negative
edges to the roots of the left and right sub-trees, respectively.

9

Algorithm 3 Learning Decision Trees
Require: pts, terms, cover, preds
Ensure: Decision tree DT
1: if ∃t : pts ⊆ cover[t] then return LeafNode[L ← t]
2: if preds = ∅ then return ⊥
3: p← Pick predicate from preds
4: L← LearnDT({pt | p[pt]}, terms, cover, preds \ {p})
5: R← LearnDT({pt | ¬p[pt]}, terms, cover, preds \ {p})
6: return InternalNode[A ← p, left ← L, right ← R]

Information-gain heuristic. The choice of the predicate at line 3 influences
the size of the decision tree learned by Algorithm 3, and hence, in our setting,
the size of the solution expression generated by Algorithm 2. We use the classical
information gain heuristic to pick the predicates. Informally, the information
gain heuristic treats the label as a random variable, and chooses to split on the
attribute knowing whose value will reveal the most information about the label.
We do not describe all aspects of computing information gain, but refer the reader
to any standard textbook on machine learning [4]. Given a set of points pts′ ⊆ pts
the entropy H(pts′) is defined in terms of the probability Ppts′(label(pt) = t) of a
point pt ∈ pt′ being labeled with the term t as

H(pts′) = −
∑

t

Ppts′(label(pt) = t) · log2 Ppts′(label(pt) = t)

Further, given a predicate p ∈ preds, the information gain of p is defined as

G(p) =
|ptsy|
|pts| ·H(ptsy) + |ptsn|

|pts| ·H(ptsn)

where ptsy = {pt ∈ pts | p[pt]} and ptsn = {pt ∈ pts | ¬p[pt]}. Hence, at line 3,
we compute the value G(p) for each predicate in preds, and pick the one which
maximizes G(p).

We use conditional probabilities Ppts′(label(pt) = t | pt) to compute the prob-
ability Ppts′(label(pt) = t). The assumption we make about the prior distribution
is that the likelihood of a given point pt being labeled by a given term t is
proportional to the number of points in cover[t]. Formally, we define:

Ppts′(label(pt) = t | pt) =

0 if pt /∈ cover[t]

|cover[t] ∩ pts′|∑
t′|pt∈cover[t′]

|cover[t′] ∩ pts′|
if pt ∈ cover[t]

Now, the unconditional probability of an arbitrary point being labeled with t is
given by Ppts′(label(pt) = t) =

∑
pt Ppts′(label(pt) = t | pt) · Ppts′(pt). Assuming a

uniform distribution for picking points, we have that

Ppts′(label(pt) = t) = 1
|pts| ·

∑
pt

Ppts′(label(pt) = t | pt)

10

4.3 Extensions and Optimizations

The Anytime Extension. Algorithm 2 stops enumeration of terms and pred-
icates as soon as it finds a single solution to the synthesis problem. However,
there are cases where due to the lack of sufficiently good predicates, the decision
tree and the resulting solution can be large (see Example 9). Instead, we can let
the algorithm continue by generating more terms and predicates. This could lead
to different, potentially smaller decision trees and solutions.

Example 9. Given the specification (x ≥ 0 ∧ y ≥ 0)⇒ (f(x, y) = 1⇔ x+ y ≤ 2)
and a run of Algorithm 2 where the terms 0 and 1 are generated; the terms fully
cover any set of points for this specification. Over a sequence of iterations the
predicates are generated in order of size. Now, the predicates generated of size 3
include x = 0, x = 1, x = 2, y ≤ 2, y ≤ 1, and y ≤ 0. With these predicates, the
decision tree depicted in Figure 3a is learned, and the corresponding conditional
expression is correct for the specification. However, if the procedure continues to
run after the first solution is generated, predicates of size 4 are generated. Among
these predicates, the predicate x+ y ≤ 2 is also generated. With this additional
predicate, the decision tree in Figure 3b is generated, leading to the compact
solution f(x, y) ≡ if x+ y ≤ 2 then 1 else 0.

x = 0
y ≤ 2

1 0

x = 1
y ≤ 1

1 0

x = 2
y ≤ 0

1 0

0

(a) Decision tree for predicates of size 3

x+ y ≤ 2

1 0
(b) Decision tree for predicates of size 4

Decision Tree Repair. In Algorithm 2,
we discard the terms that cover the same
set of points as already generated terms
in line 16. However, these discarded terms
may lead to better solutions than the al-
ready generated ones.

Example 10. Consider a run of the algo-
rithm for the running example, where the
set pts contains the points {x 7→ 1, y 7→ 0}
and {x 7→ −1, y 7→ 0}. Suppose the algo-
rithm first generates the terms 0 and 1.
These terms are each correct on one of the
points and are added to terms. Next, the

algorithm generates the terms x and y. However, these are not added to terms as
x (resp. y) is correct on exactly the same set of points as 1 (resp. 0).

Suppose the algorithm also generates the predicate x ≤ y and learns the
decision tree corresponding to the expression e ≡ if x ≤ y then 0 else 1. Now,
verifying this expression produces a counter-example point, say {x 7→ 1, y 7→ 2}.
While the term 0, and correspondingly, the expression e is incorrect on this point,
the term y which was discarded as an equivalent term to 0, is correct.

Hence, for a practical implementation of the algorithm we do not discard these
terms and predicates, but store them separately in a map Eq : terms → [[GT]]
that maps the terms in terms to an additional set of equivalent terms. At lines 16,
if the check for distinctness fails, we instead add the term t to the Eq map. Now,

11

when the decision tree learning algorithm returns an expression that fails to
verify and returns a counter-example, we attempt to replace terms and predicates
in the decision tree with equivalent ones from the Eq map to make the decision
tree behave correctly on the counter-example.

Example 11. Revisiting Example 10, instead of discarding the terms x and y,
we store them into the Eq array, i.e., we set Eq(0) = {y} and Eq(1) = {x}.
Now, when the verification of the expression fails, with the counter-example
point {x 7→ 1, y 7→ 2}, we check the term that is returned for the counter-
example point–here, 0. Now, we check whether any term in Eq(0) is correct on
the counter-example point–here, the term y. If so, we replace the original term
with the equivalent term that is additionally correct on the counter-example
point and proceed with verification. Replacing 0 with y in the expression gives us
if x ≤ y then y else 1. Another round of verification and decision tree repair
will lead to replacing the term 1 with x, giving us the final correct solution.

Branch-wise verification. In Algorithm 2, and in most synthesis techniques,
an incorrect candidate solution is used to generate one counter-example point.
However, in the case of conditional expressions and point-wise specifications,
each branch (i.e., leaf of the decision tree) can be verified separately. Verifying
each branch involves rewriting the specification as in the point-wise verification
defined in Section 3 – but instead of adding a premise to each clause asserting
that the arguments to the function are equal to a point, we add a premise that
asserts that the arguments satisfy all predicates along the path to the leaf. This
gives us two separate advantages:
– We are able to generate multiple counter-examples from a single incorrect

expression. This reduces the total number of iterations required, as well as
the number of calls to the expensive decision tree learning algorithm.

– It reduces the complexity of each call to the verifier in terms of the size of
the SMT formula to be checked. As verification procedures generally scale
exponentially with respect to the size of the SMT formula, multiple simpler
verification calls are often faster than one more complex call.

This optimization works very well along with the decision tree repair described
above as we can verify and repair each branch of the decision tree separately.

Example 12. Consider the verification of the expression if x ≤ y then 0 else 1
for the running example. Instead of running the full expression through the verifier
to obtain one counter-example point, we can verify the branches separately
by checking the satisfiability of the formulae x ≤ y ∧ f(x, y) = 0 ∧ ¬Φ and
¬(x ≤ y) ∧ f(x, y) = 1 ∧ ¬Φ. This gives us two separate counter-example points.

5 Evaluation

We built a prototype SyGuS solver named eusolver that uses the divide-and-
conquer enumerative algorithm. The tool consists of 6000 lines of Python code
implementing the high-level enumeration and unification algorithms, and 3000

12

lines of C++ code implementing the decision tree learning. The code is written to
be easily extensible and readable, and has not been optimized to any degree. All
experiments were executed on the Starexec platform [22] where each benchmark
is solved on a node with two 4-core 2.4GHz Intel processors and 256GB of RAM,
with a timeout of 3600 seconds.

Gen. LIA PBE

200

400

600

67
%

99
%

92
%

63
%

10
0

%

5
%

45
%

53
%

1
·

10
−

1
%

Fig. 4: Number of benchmarks
solved per track for eusolver
(red), CVC4 (blue), and esolver
(green)

Goals. We seek to empirically evaluate how our
synthesis algorithm compares to other state-of-
the-art synthesis techniques along the follow-
ing dimensions: (a) Performance: How quickly
can the algorithms arrive at a correct solution?
(b) Quality: How good are the solutions produced
by the algorithms? We use compactness of so-
lutions as a metric for the quality of solutions.
(c) Effect of anytime extension: How significant
is the improvement in the quality of the solutions
generated if the algorithm is given an additional
(but fixed) time budget?
Benchmarks. We draw benchmarks from 3
tracks of the SyGuS competition 2016: 2

(a) General track. The general track contains 309
benchmarks drawn from a wide variety of domains and applications.
(b) Programming-by-example track. The PBE track contains 852 benchmarks
where, for each benchmark, the semantic specification is given by a set of input-
output examples.
(c) Linear-integer-arithmetic track. The LIA track contains 73 benchmarks, each
over the linear integer arithmetic theory, where the grammar is fixed to a standard
grammar that generates conditional linear arithmetic expressions.

5.1 Discussion
Figures 5 and 4 plot the full results of running eusolver on the benchmarks
from the three categories. The plots also contain the results of 2 other state-of-
the-art solvers: (a) the white-box solver CVC4-1.5.1 based on [17], and (b) the
enumerative black-box solvers esolver described in [2]
Performance. eusolver was able to solve 206 of the 309 benchmarks in the
general track and 72 of the 73 benchmarks in the PBE track. CVC4 solves 195 and
73 benchmarks in these categories, while esolver solves 139 and 34. As Figure 5
shows, the performance is comparable to both CVC4 and esolver in both tracks,
being only marginally slower in the LIA track. However, eusolver performs
exceptionally well on the PBE benchmarks, solving 787 while CVC4 solved 39 and
esolver solved 1. PBE benchmarks require the solver to generalize from input-
output examples—eusolver inherits this ability from the enumerative approach.
2 The SyGuS competition 2016 included an addition track – the invariant generation
track. However, the specifications in this track are not simply separable, and eusolver
falls back to the standard enumeration algorithm instead of the divide-and-conquer
techniques described in this paper.

13

0 50 100 150 200

0
600

1,200
1,800
2,400
3,000

Benchmarks

T
im

e
(s
ec
on

ds
)

(a) General track.

0 20 40 60 80

0
50

100
150
200
250

Benchmarks

T
im

e
(s
ec
on

ds
)

(b) LIA track.

0 200 400 600 800
0

600
1,200
1,800
2,400
3,000

Benchmarks

T
im

e
(s
ec
on

ds
)

(c) PBE track.

Interpretation: For every point, the x-coordinate gives the number of benchmarks
which are solved within the time indicated by the y-coordinate.

Fig. 5: Running times for esolver (dotted), CVC4 (dashed), and eusolver (solid)

0 10 20
0

10

20

esolver sol. size

eu
so

lv
er

so
l.
si
ze

Fig. 6: Scatter plot of eu-
solver and esolver solu-
tion sizes.

However, the standard enumerative solver esolver
is unable to solve these benchmarks due to the large
solution sizes—eusolver overcomes this hurdle with
the divide-and-conquer approach.
Quality of Solutions. Figure 6 highlights the solu-
tion sizes produced by eusolver and esolver for
the commonly solved benchmarks in the general track.
eusolver often matches the solution sizes produced
by esolver (108 of the 112 benchmarks). esolver is
guaranteed to produce the smallest solution possible.
This shows that the divide-and-conquer approach does

not significantly sacrifice solution quality for better performance.

20 40 60

20

40

60

First Solution Size

M
in
.S

ol
ut
io
n
Si
ze

Fig. 7: Scatter plot of first
vs. minimum size solutions
with the anytime extension.
Points below x = y benefit
from the anytime extension.

Effect of Anytime Extension.We selected 50 ICFP
benchmarks from the general track and use them to
test the anytime extension described in Section 4.3.
The ICFP benchmarks are synthesis tasks that were
first proposed as a part of the ICFP programming
contest 2013, which were then adapted to the SyGuS
setting. To the best of our knowledge, no other SyGuS
solver has been able to solve the ICFP benchmarks
satisfactorily. For 18 of the 50 ICFP benchmarks, we
were able to obtain a more compact solution by letting
the algorithm continue execution after the first solu-
tion was discovered. Further, the difference in the first
and smallest solutions is sometimes significant—for
example, in the case of the “icfp_118_100” benchmark, we see a reduction of
55%. An interesting phenomenon that we observed was that while the size of
the decision tree almost always went down with time, the size of the solutions
sometimes increased. This is because the algorithm generated larger terms and
predicates over time, increasing the size of the labels and attributes in each node
of the decision tree.

Overall, our experiments suggests that: (a) The DCSolve algorithm is able to
quickly learn compact solutions, and generalizes well from input-output examples.

14

(b) The anytime nature of DCSolve often reduces the size of the computed solution;
(c) The DCSolve algorithm works competently on problems from different domains.

6 Concluding Remarks

Related Work. Program synthesis has seen a revived interest in the last decade,
starting from the sketch framework [20, 21] which proposed counterexample
guided inductive synthesis (CEGIS). Most synthesis algorithms proposed in
recent literature can be viewed as an instantiation of CEGIS. Synthesis of string
manipulating programs using examples has found applications in Microsoft’s
FlashFill [7], and the ideas have been generalized in a meta-synthesis framework
called FlashMeta [15]. Other recent work in the area of program synthesis have
used type-theoretic approaches [9, 14] for program completion and for generating
code snippets. Synthesis of recursive programs and data structure manipulating
code has also been studied extensively [1, 5, 12]. Lastly, synthesis techniques
based on decision trees have been used to learn program invariants [6].

In the area of SyGuS, solvers based on enumerative search [23], stochastic
search [2, 19] and symbolic search [8, 11] were among the first solvers devel-
oped. The sketch approach has also been used to develop SyGuS solvers [10].
Alchemist [18] is another solver that is quite competitive on benchmarks in
the linear arithmetic domains. More recently, white box solvers like the CVC4
solver [17] and the unification based solver [3] have also been developed.

The enumerative synthesis algorithm used by esolver [2, 23] and the work
on using decision trees for piece-wise functions [13] are perhaps the most closely
related to the work described in this paper. We have already discussed at length
the shortcomings of esolver that our algorithm overcomes. The approach for
learning piece-wise functions [13] also uses decision trees. While the presented
framework is generic, the authors instantiate and evaluate it only for the linear
arithmetic domain with a specific grammar. In DCSolve, neither the decision tree
learning algorithm, nor the enumeration is domain-specific, making DCSolve a
domain and grammar agnostic algorithm. The algorithm presented in [13] can
easily learn large constants in the linear integer domain. This is something that
enumerative approaches, including DCSolve, struggle to do. The heuristics used for
decision tree learning are different; in [13], the authors use a heuristic based on
hitting sets, while we use an information gain heuristic with cover-based priors.
Conclusion. This paper has presented a new enumerative algorithm to solve
instances of the Syntax-Guided Synthesis (SyGuS) problem. The algorithm over-
comes the shortcomings of a basic enumerative algorithm by using enumeration
to only learn small expressions which are correct on subsets of the inputs. These
expressions are then used to form a conditional expression using Boolean combi-
nations of enumerated predicates using decision trees. We have demonstrated the
performance and scalability of the algorithm by evaluating it on standard bench-
marks, with exceptional performance on programming-by-example benchmarks.
The algorithm is generic, efficient, produces compact solutions, and is anytime —
in that continued execution can potentially produce more compact solutions.

15

References

[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive Program
Synthesis. In Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13–19, 2013, pages 934–950, 2013.

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. Syntax-guided Synthesis. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20–23, 2013,
pages 1–8, 2013.

[3] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. Synthesis Through Unification.
In Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18–24, 2015, Proceedings, Part II, pages 163–179, 2015.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
ISBN 0387310738.

[5] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing Data Structure
Transformations from Input-output Examples. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages 229–239, 2015.

[6] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. Learning Invariants
using Decision Trees and Implication Counterexamples. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
499–512, 2016.

[7] Sumit Gulwani. Automating String Processing in Spreadsheets using Input-output
Examples. In Proceedings of the 38 th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26–28, 2011, pages 317–330, 2011.

[8] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthe-
sis of Loop-free Programs. In Proceedings of the 32 nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4–8, 2011, pages 62–73, 2011.

[9] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete Com-
pletion using Types and Weights. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 27–38, 2013.

[10] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Jeffrey S. Foster.
Adaptive Concretization for Parallel Program Synthesis. In Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part II, pages 377–394, 2015.

[11] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
Component-based Program Synthesis. In Proceedings of the 32 nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1–8 May 2010, pages 215–224, 2010.

[12] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. Synthesis Modulo
Recursive Functions. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,

16

OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, pages 407–426, 2013.

[13] Parthasarathy Madhusudan, Daniel Neider, and Shambwaditya Saha. Synthesizing
Piece-wise Functions by Learning Classifiers. In Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, Netherlands, April 2 – 8, 2016. Proceedings,
2016.

[14] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed Program
Synthesis. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15–17, 2015,
pages 619–630, 2015.

[15] Oleksandr Polozov and Sumit Gulwani. FlashMeta: A Framework for Inductive
Program Synthesis. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25–30, 2015,
pages 107–126, 2015.

[16] J. Ross Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106,
1986.

[17] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W.
Barrett. Counterexample-Guided Quantifier Instantiation for Synthesis in SMT.
In Computer Aided Verification - 27th International Conference, CAV 2015, San
Francisco, CA, USA, July 18–24, 2015, Proceedings, Part II, pages 198–216, 2015.

[18] Shambwaditya Saha, Pranav Garg, and P. Madhusudan. Alchemist: Learning
Guarded Affine Functions. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I, pages 440–446, 2015.

[19] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Superoptimization. In
Architectural Support for Programming Languages and Operating Systems, ASPLOS
2013, Houston, TX, USA - March 16 – 20, 2013, pages 305–316, 2013.

[20] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and
Vijay A. Saraswat. Combinatorial Sketching for Finite Programs. In Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, October
21-25, 2006, pages 404–415.

[21] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and Kemal Ebcioğlu.
Programming by Sketching for Bit-streaming Programs. In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, pages 281–294, 2005.

[22] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A cross-community
infrastructure for logic solving. In Automated Reasoning - 7th International Joint
Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 19-22, 2014. Proceedings, pages 367–373, 2014. URL
http://dx.doi.org/10.1007/978-3-319-08587-6_28.

[23] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M. K. Martin, and Rajeev Alur. Transit: Specifying Protocols with Concolic
Snippets. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2013, Seattle, WA, USA, June 16–19, 2013, pages 287–296,
2013.

17

http://dx.doi.org/10.1007/978-3-319-08587-6_28

	 Scaling Enumerative Program Synthesis via Divide and Conquer

