
SYNTHESIS OF DISTRIBUTED PROTOCOLS
FROM SCENARIOS AND SPECIFICATIONS

Abhishek Udupa

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2016

Rajeev Alur, Zisman Family Professor of Computer and Information Science

Supervisor of Dissertation

Lyle Ungar, Professor of Computer and Information Science

Graduate Group Chairperson

Dissertation Committee:
Chaired by Steve Zdancewic, Professor of Computer and Information Science
Joseph Devietti, Assistant Professor of Computer and Information Science
Oleg Sokolsky, Research Associate Professor of Computer and Information Science
Stavros Tripakis, Associate Professor, Aalto University, Finland



SYNTHESIS OF DISTRIBUTED PROTOCOLS

FROM SCENARIOS AND SPECIFICATIONS

COPYRIGHT

2016

Abhishek Udupa

Licensed under a Creative Commons Attribution 4.0 License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/


To my parents

iii



Acknowledgments

I would like to thank my advisors Rajeev and Milo for their continual support and mentoring

over the past five years. Rajeev provided me with a great deal of freedom to build tools and

pursue my own ideas, while also gently nudging me in the right direction whenever I drifted

too far off course. His problem solving techniques have shaped my own research abilities, and

will continue to shape the way I approach problems in the years to come. Milo was always

available to provide me with solid advice, whether it be on research, or other professional and

personal matters. It is no understatement when I say that this dissertation would not have

been possible without their mentoring.

I thank my dissertation committee chaired by Steve Zdancewic, and with Oleg Sokolsky,

Joseph Devietti and Stavros Tripakis as members, for their comments and feedback that have

served to improve the overall quality of this dissertation. I am also grateful to them for being

extremely flexible with respect to the scheduling of the dissertation proposal and defense.

I am grateful to my parents, who encouraged my “scientific” curiosity at an early age,

even if meant that I would take apart things and need a lot of assistance in putting them back

together, assuming that I had not destroyed it. On a more serious note, they have provided me

with every opportunity that paved the path to this dissertation, and tolerated all my off-kilter

views on a variety of topics, and I thank them for that, and for not asking how long until I

graduate too many times.

The work described in this dissertation was completed in collaboration with a great set

of collaborators. Arun Raghavan, Santosh Nagarakatte and Jyotirmoy Deshmukh helped me

find my feet in my early graduate school days. Stavros Tripakis, Christos Stergiou, Arjun

Radhakrishna and Mukund Raghothaman have been a pleasure to work with. I thank them for

being such awesome collaborators.

I thank Sudipto Guha, Rajeev Alur, Milo Martin, Ben Taskar, Val Tannen and Benjamin

Pierce for being great instructors and putting the effort into teaching the courses at Penn that I

have benefitted immensely from.

My stay at Penn was enriched by the company of great friends like Mukund Raghothaman,

Christos Stergiou, Arjun Radhakrishna, Arun Raghavan, Jyotirmoy Deshmukh, Salar Moarref,

Christian Delozier, Arjun Narayan and Katherine Gibson. I hope that these friendships will

continue to grow, even after I graduate.

iv



Outside of Penn, my friends from college, Aaron, Dianne, Aswin, Raksha, Chengappa, Nishi

and Alden have proved to be gracious hosts on my various visits to and vacations in their

respective cities, as well as objective, non-judgmental sounding boards in getting my thoughts

straight at various points.

I would also like to thank my Master’s thesis advisors, R. Govindarajan and Matthew J.

Thazhuthaveetil, at the Indian Institute of Science, Bangalore, who encouraged, supported

and mentored my very first research projects. Thanks are also due to Sriram Rajamani, Aditya

Nori, Bill Thies and Kaushik Rajan, who have all mentored me during my various stints at

Microsoft Research India, as well as Murali Talupur, who was my mentor during an internship

at Intel Corporation. The mentoring I received from all of these people played a large role in

my decision to pursue, and continue with a doctoral degree.

The research described in this dissertation was partially supported by NSF award CCF

0905464 and the NSF Expeditions in Computing grant CCF 1138996.

v



Abstract

Distributed protocols, typically expressed as stateful agents communicating asynchronously

over buffered communication channels, are difficult to design correctly. This difficulty has

spurred decades of research in the area of automated model-checking algorithms. In turn,

practical implementations of model-checking algorithms have enabled protocol developers

to prove the correctness of such distributed protocols. However, model-checking techniques

are only marginally useful during the actual development of such protocols; typically as

a debugging aid once a reasonably complete version of the protocol has already been

developed. The actual development process itself is often tedious and requires the designer

to reason about complex interactions arising out of concurrency and asynchrony inherent to

such protocols. In this dissertation we describe program synthesis techniques which can be

applied as an enabling technology to ease the task of developing such protocols. Specifically,

the programmer provides a natural, but incomplete description of the protocol in an intuitive

representation — such as scenarios or an incomplete protocol. This description specifies

the behavior of the protocol in the common cases. The programmer also specifies a set

of high-level formal requirements that a correct protocol is expected to satisfy. These

requirements can include safety requirements as well as liveness requirements in the

form of Linear Temporal Logic (ltl) formulas. We describe techniques to synthesize

a correct protocol which is consistent with the common-case behavior specified by the

programmer and also satisfies the high-level safety and liveness requirements set forth by

the programmer. We also describe techniques for program synthesis in general, which serve

to enable the solutions to distributed protocol synthesis that this dissertation explores.

vi



Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xiii

List of Algorithms xiv

1 Introduction 1

1.1 The Traditional Design Methodology . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The VI Cache Coherence Protocol . . . . . . . . . . . . . . . . . . . 4

1.1.2 Designing Distributed Protocols: The Easy Parts . . . . . . . . . . . 8

1.1.3 Designing Distributed Protocols: The Difficult Parts . . . . . . . . . 9

1.2 An Alternative Approach to Protocol Design . . . . . . . . . . . . . . . . . . 11

1.2.1 Automating the Difficult Parts of Protocol Design . . . . . . . . . . . 11

1.2.2 Feasibility and Effectiveness of Protocol Completion . . . . . . . . . 14

1.2.3 Protocol Completion as Synthesis of Interpretations . . . . . . . . . 16

1.3 A Framework for Function Synthesis . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Contributions of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . 20

2 The Protocol Completion Problem 22

2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Formalization and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Function Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



2.2.3 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Extended State Machines . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.6 Composition of esms and esm-sks . . . . . . . . . . . . . . . . . . 27

2.2.7 Symmetry and Symmetric Types . . . . . . . . . . . . . . . . . . . . 29

2.2.8 Requirements and Specifications . . . . . . . . . . . . . . . . . . . . 31

2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 A Symbolic Strategy via Parametrized Transitions 35

3.1 A Simplified, Finite Version of the Problem . . . . . . . . . . . . . . . . . . 36

3.2 The Parameterized Symbolic Transition System . . . . . . . . . . . . . . . . 36

3.3 Construction of the ltl Tester . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The Symbolic Synthesis Algorithm . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Evaluating the Symbolic Algorithm . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Applying the Symbolic Algorithm to Complete the VI Protocol . . . . 43

3.5.2 Insights from Experimenting with the Symbolic Algorithm . . . . . . 46

3.6 Road-map for the Rest of the Dissertation . . . . . . . . . . . . . . . . . . . 47

4 transit: Specifying Protocols with Concolic Snippets 51

4.1 Overview of transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Concolic Snippets and Programming with transit . . . . . . . . . . . . . 54

4.2.1 Using Snippets in transit . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Expression Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Correctness of SynthForPoints . . . . . . . . . . . . . . . . . . . 62

4.3.2 Constraints for Update Expressions . . . . . . . . . . . . . . . . . . 64

4.3.3 Constraints for Guard Expressions . . . . . . . . . . . . . . . . . . . 64

4.3.4 Evaluation of the Expression Inference Algorithms . . . . . . . . . . 65

4.4 Experimental Evaluation of transit . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Case Study A: Non-blocking MSI . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Case Study B: From MSI to MESI . . . . . . . . . . . . . . . . . . . 68

4.4.3 Case Study C: The SGI-Origin Protocol . . . . . . . . . . . . . . . . 68

4.4.4 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . 70

viii



5 SyGuS 71

5.1 Correctness Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Set of Candidate Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 The Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Comparison with other Meta-synthesis Frameworks . . . . . . . . . . . . . 74

5.4.1 sketch and Rosette . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 FlashMeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Enumerative Strategies for SyGuS Solvers 77

6.1 esolver: An Enumerative SyGuS Solver . . . . . . . . . . . . . . . . . . . 77

6.2 Capabilities and Limitations of esolver . . . . . . . . . . . . . . . . . . . 78

6.2.1 Separable Specifications . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.2 Black Box and White Box Algorithms . . . . . . . . . . . . . . . . . 82

6.2.3 A Comparison of White Box and Black Box Algorithms . . . . . . . . 85

6.3 Combining Enumeration with Unification . . . . . . . . . . . . . . . . . . . 87

6.3.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Program Synthesis using Decision Trees . . . . . . . . . . . . . . . . 90

6.3.3 Putting it all Together . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.4 Evaluation of eusolver . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Synthesis of Finite-state Protocols from Scenarios and Specifications 107

7.1 Overview of Finite-state Protocol Synthesis . . . . . . . . . . . . . . . . . . 107

7.2 Scenarios to fsm-sks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Completion of fsm-sks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3.1 State Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.2 Analysis of Counterexample Traces . . . . . . . . . . . . . . . . . . 113

7.3.3 Complexity of the fsm-sk Completion Problem . . . . . . . . . . . . 115

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.4.1 Alternating-bit Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.2 The VI Cache Coherence Protocol . . . . . . . . . . . . . . . . . . . 117

7.4.3 The Consensus Protocol . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

ix



8 Completion of Distributed Protocols with Symmetry 121

8.1 Overview of Symmetric Protocol Completion . . . . . . . . . . . . . . . . . 121

8.2 Solving the Symmetric Protocol Completion Problem . . . . . . . . . . . . . 122

8.2.1 Initial Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2.2 Analyzing Counterexample Traces . . . . . . . . . . . . . . . . . . . 124

8.2.3 Heuristics and Optimizations . . . . . . . . . . . . . . . . . . . . . . 127

8.3 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3.1 Architecture of kinara . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3.2 Construction of the Annotated Quotient Structure . . . . . . . . . . 133

8.3.3 Construction of the Annotated Product Structure . . . . . . . . . . . 135

8.3.4 Checking for a Fair, Accepting Cycle . . . . . . . . . . . . . . . . . . 136

8.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.4.1 Peterson’s Mutual Exclusion Algorithm . . . . . . . . . . . . . . . . 138

8.4.2 Self Stabilizing Systems . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.4.3 Cache Coherence Protocol . . . . . . . . . . . . . . . . . . . . . . . 138

8.5 Summary of Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 145

8.5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Related Work 148

9.1 Classical Reactive Synthesis Techniques . . . . . . . . . . . . . . . . . . . . 148

9.2 Synthesis from Partial or Incomplete Descriptions . . . . . . . . . . . . . . . 150

9.3 Synthesis from Sequence Charts . . . . . . . . . . . . . . . . . . . . . . . . 150

9.4 Straight-line and Recursive Program Synthesis . . . . . . . . . . . . . . . . 151

10 Conclusions 153

10.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10.2 Themes Explored in this Dissertation . . . . . . . . . . . . . . . . . . . . . 154

10.2.1 Interplay between Programmer Involvement and Scalability . . . . . 154

10.2.2 Use of Alternative Techniques to Specify Intent . . . . . . . . . . . . 155

10.3 Avenues for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.4 Reflections on Verification and Program Synthesis . . . . . . . . . . . . . . 157

x



List of Tables

4.1 Expression Vocabulary used in Coherence Protocols . . . . . . . . . . . . . 59

4.2 Illustration of the working of the expression inference algorithm . . . . . . 62

4.3 Benchmarks and evaluation of the expression inference algorithms . . . . . 67

4.4 Performance of Snippet-based Protocol Design . . . . . . . . . . . . . . . . 67

4.5 Effectiveness Metrics for Snippet-based Protocol Design . . . . . . . . . . . 69

5.1 Comparison of various meta-synthesis frameworks . . . . . . . . . . . . . . 75

6.1 A multi-labelled sample set over which a decision tree is to be learned . . . 93

6.2 Entropies that result by splitting using the predicate x < y . . . . . . . . . . 94

6.3 Entropies that result by splitting using the predicate x = 0 . . . . . . . . . . 94

6.4 Experimental Results for eusolver on the ICFP benchmarks . . . . . . . . 104

6.5 Experimental Results for eusolver on the max benchmarks . . . . . . . . 105

7.1 Experimental Results for Finite-state Protocol Synthesis from Scenarios . . . 116

8.1 Experimental Results for Automatic Completion of Symmetric Protocols . . 146

xi



List of Figures

1.1 The traditional methodology for designing distributed protocols . . . . . . . 3

1.2 Communication Architecture of the VI Cache Coherence Protocol . . . . . . 5

1.3 The scenarios for the VI protocol . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The incomplete state machine for the cache(s) in the VI protocol . . . . . . 8

1.5 The incomplete state machine for the directory in the VI protocol . . . . . . 8

1.6 A scenario implied by the common-case scenarios in the VI protocol . . . . 9

1.7 Unhandled behavior in the cache state machine for the VI protocol . . . . . 10

1.8 Unhandled behavior in the directory state machine for the VI protocol . . . 10

1.9 An alternative methodology for distributed protocol design . . . . . . . . . 12

1.10 A possible completion of the implied scenario in the VI protocol . . . . . . . 13

1.11 The completed state machine for the cache in the VI protocol . . . . . . . . 14

1.12 The completed state machine for the directory in the VI protocol . . . . . . 14

1.13 Peterson’s Mutual Exclusion Protocol . . . . . . . . . . . . . . . . . . . . . 17

3.1 Depiction of the space of all possible completions . . . . . . . . . . . . . . . 45

3.2 Common Algorithmic Scheme of Solution Strategies . . . . . . . . . . . . . 47

4.1 Overview of Developing a Protocol with transit . . . . . . . . . . . . . . 52

4.2 Example of a Concolic Snippet . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Example of an Erroneous Execution Presented to the Programmer . . . . . 55

4.4 Impact of signature-based pruning in the expression inference algorithm . . 66

6.1 An example of a learned decision tree . . . . . . . . . . . . . . . . . . . . . 95

6.2 Anatomy of an ICFP Benchmark . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Algorithm for Synthesizing Finite-state Protocols from Scenarios . . . . . . 108

xii



7.2 Scenarios for the Alternating-bit Protocol (1) . . . . . . . . . . . . . . . . . 109

7.3 Scenarios for the Alternating-bit Protocol (2) . . . . . . . . . . . . . . . . . 110

7.4 fsm-sk for the ABP Sender Inferred from the Scenarios . . . . . . . . . . . 112

7.5 Scenario for the consensus protocol. . . . . . . . . . . . . . . . . . . . . . . 117

8.1 Overview of the Algorithm for Completion of Symmetric Protocols . . . . . 122

8.2 Architecture of the kinara framework . . . . . . . . . . . . . . . . . . . . 131

8.3 Simple Cases for Read and Write Commands . . . . . . . . . . . . . . . . . 139

8.4 Write Command in Shared State . . . . . . . . . . . . . . . . . . . . . . . . 140

8.5 Commands in Exclusive State in the German/MSI Protocol . . . . . . . . . 142

8.6 Evict Commands in the German/MSI protocol . . . . . . . . . . . . . . . . 143

8.7 A Racy Scenario in the MSI/German Cache Coherence Protocol . . . . . . . 144

8.8 A Corner-case in the German/MSI Protocol . . . . . . . . . . . . . . . . . . 145

xiii



List of Algorithms

3.1 GetSymbolicInterps: Synthesize all correct fsm-sk completions . . . . . . 42

4.1 SynthForPoints: Synthesize an expression consistent with a set of inputs . 60

4.2 SynthForAll: Synthesize an expression that is consistent for all inputs . . . 61

6.1 Learn-DT: An algorithm to learn a decision tree . . . . . . . . . . . . . . . . 89

6.2 ExpandTermSet: Expand the set of terms for synthesis . . . . . . . . . . . . 95

6.3 TermSolve: Find partial expressions for a given set of points . . . . . . . . . 96

6.4 UnifyTerms: Attempt to combine sub-expressions . . . . . . . . . . . . . . 97

6.5 eusolve: Solve for a SyGuS specification ψcan . . . . . . . . . . . . . . . . 98

8.1 Algorithm to find a fair, green strongly connected subgraph . . . . . . . . . . 137

xiv



1
Introduction

Protocols for coordination among concurrent processes are an essential component of modern

multiprocessor and distributed systems. The multitude of behaviors arising due to asynchrony

and concurrency makes the design of such protocols difficult. Consequently, analyzing such

protocols has been a central theme of research in formal verification for decades. Now that

verification tools have matured to a point where they can be applied to find bugs in real-

world protocols, a promising research direction is to develop and leverage program synthesis

techniques as an enabling technology to simplify the design process of such protocols via more

intuitive programming abstractions for specifying the desired behavior.

Traditionally, a distributed protocol has been modeled as a set of communicating processes,

where each process is described as an extended state machine which has a finite number of

control states or locations, along with a finite number of typed state variables. The correctness

of a protocol is specified by both safety and liveness requirements. Model-checking techniques

are then used to check that the protocol satisfies the safety and liveness requirements. In

many cases, the model-checking algorithms are completely automatic. It is thus natural to

ask if we can derive a correct protocol implementation starting from a set of safety and

liveness requirements. And indeed, in reactive synthesis [RW89, PR89, BJP+12], the goal is to

automatically derive a non-distributed protocol, or a single reactive module, from its correctness

requirements specified in temporal logic. However, if we require the implementation to be

distributed, then reactive synthesis is undecidable [PR90, LT00, Tri04, FS05]. Furthermore, it

is not clear that precisely codifying the behavior of the entire protocol using an intricate and

complex formula in some temporal logic of choice is necessarily an easier or simpler task than

specifying an operational description or an executable model of the protocol.

1



This dissertation proposes an alternative, and potentially more feasible approach inspired by

program sketching [SLRBE05]. Our approach asks the programmer to specify the common case

behavior of the protocol as a set of incomplete communicating processes, which may include

some unknown functions. These unknown functions could be used in the guards for transitions

— which describe the condition under which the transition in question can be executed —

and the update functions to state variables on transitions — which describe how the state

variables of the state machine evolve upon execution of the transition. The programmer could

also provide some information on the missing behavior. This information might be in the

form of input-output examples describing the behavior of the unknown functions, or could be

information about exactly what behavior is left unspecified, for example, information about

what kinds of messages need to be handled at a given point. The programmer would also have

to state the high-level correctness requirements for the protocol in a temporal logic of choice.1

The role of the synthesizer is to complete the incomplete protocol provided by the programmer,

such that the completed protocol (a) satisfies the high-level correctness requirements set forth

by the programmer, and (b) is consistent with the information provided by the programmer

about the unspecified behavior. This methodology for protocol specification can be viewed as

a fruitful collaboration between the designer and the synthesis tool: the programmer has to

describe the structure of the desired protocol, but some details that the programmer is unsure

about, for instance, regarding corner cases and handling of unexpected messages, are filled in

automatically by the tool.

In our formalization of the synthesis problem, processes communicate using input/output

channels that carry typed messages. Each process is described by a state machine with a set of

typed state variables. Transitions consist of guards — that test some condition over the state

variables — and updates to state variables and fields of messages to be sent. Such guards and

updates can involve unknown (typed) functions to be filled in by the synthesizer. In many

distributed protocols, such as cache coherence protocols, processes are expected to behave in a

symmetric manner. Thus, we allow variables to have symmetric types that restrict the read/write

accesses to obey symmetry constraints. To specify safety and liveness requirements, we allow

the use of safety and liveness (or Büchi) monitors respectively. Finally, fairness assumptions

are utilized to restrict incorrect executions to those that are fair. It is worth noting that in

1Note that these correctness requirements are typically much less detailed and simpler than the temporal logic
formulae expected as input to typical reactive synthesis algorithms which attempt to synthesize a protocol purely
from a specification in temporal logic.

2



C1
I

D
V
owner = C2

C2
V

REQ
GET

INV

INVACK

{data := cdata}

cdata := ⊥
Iddata := dataRSP

{data := ddata}

cdata := data
ACK

V
owner := C1
V

Scenarios

I q0 q1 V

q2

q3q4

GET?
RSP!

data := ddata
ACK?

owner := src

WBREQ?
ddata := data
owner := ⊥WBACK!

GET?

INV!

IN
VA
CK
?

dd
at
a
:=
da
ta

Incomplete State Machines

G (Req⇒ FRsp)

Correctness Specifications

Code for
Protocol

Verification
or Testing

Concrete Erroneous Execution

Figure 1.1: The traditional methodology for designing distributed protocols

verification one can get useful analysis results by focusing solely on safety requirements. In

synthesis, however, ignoring liveness requirements and fairness assumptions, typically results

in trivial solutions. The protocol completion problem, then, is, given a set of extended state

machines with unknown guards and update functions, to find expressions for the unknown

functions so that the composition of the resulting machines does not have an accepting fair

execution.

In the rest of this chapter, we describe the design methodology we propose as part of this

dissertation, as well as compare and contrast it with the traditional design methodology, by

means of illustrative examples.

1.1 The Traditional Design Methodology

Figure 1.1 describes how distributed protocols are typically constructed. The programmer

starts off with a variety of artifacts which describe the desired protocol. These can be in the

form of scenarios, which describe the behavior of the protocol under specific use-cases, or

as incomplete state machines which describe the common-case behavior of the protocol. In

3



addition, the programmer usually also has in mind some high-level correctness requirements

that the protocol is expected to satisfy. These requirements could include safety requirements —

which ensure that the protocol never does something “bad” — as well as liveness requirements

— which ensure that the protocol eventually does something “good”. The programmer then

manually constructs an executable model (or implementation) of the protocol. This executable

model can be described in various languages and formalisms, such as the Promela modeling

language [Hol97], or the Murϕ modeling language [ID96, Dil96], for example.

The resulting implementation is then checked for correctness using some combination of

verification and testing techniques. For example, testing techniques could be used to check

for correct behavior with respect to different scenarios specified by the programmer, whereas

verification techniques could check that the candidate protocol satisfies the high-level safety and

liveness specifications set forth by the programmer. In the event that an error is found during

this check for correctness, the verification or testing framework provides the programmer with a

concrete execution of the candidate protocol that demonstrates the error. The programmer then

uses this information to refine or correct the behavior of the candidate protocol in the context

of the specific counterexample currently under consideration. This process often requires the

programmer to reason globally about the protocol to avoid introducing new errors as in the

corrected version of the protocol. This tedious process of discovering bugs and correcting the

protocol is iterated until a correct protocol is constructed. We now illustrate this process with

a concrete example of how a simple cache coherence protocol might be constructed using this

methodology.

1.1.1 The VI Cache Coherence Protocol

A cache coherence protocol ensures that all the processors in a multiprocessor system see a

consistent view of data, despite the possibility that data values might be cached— and modified

— by other processors in their local caches. Any coherence protocol essentially needs to ensure

that the coherence property holds: The value read by any processor from a memory location

must be the most recent value written to that memory location by any other processor in the

system. Directory-based coherence protocols ensure that this property is maintained by using

a centralized directory which is responsible for granting permissions to processors to read and

write to memory locations. The processors and the directory then coordinate by exchanging

messages with each other to acquire read and write permissions for memory locations in a

4



DirectoryCache 1 Cache 2

Environment
for Cache 1

Cache 2

Environment
for Cache 2

C1Buffer C2Buffer

DirBuffer

Figure 1.2: Communication Architecture of the VI Cache Coherence Protocol

manner that does not violate the coherence property. For the purpose of illustrating how

the traditional design methodology might be applied, we consider a simple cache coherence

protocol called the Valid-Invalid (VI) protocol.

Figure 1.2 depicts the communication architecture of a variant of the VI cache coherence

protocol, shown here with two cache state machines for clarity. The same architecture general-

izes to an arbitrary number of cache state machines. The protocol consists of a state machine

called the “Directory”, which maintains the knowledge of which cache currently holds a cached

copy of each data address. The caches communicate requests for access to a data block through

the reliable, but unordered buffer named “DirBuffer”. All communication in the protocol is

buffered and asynchronous. The only exception is that communication between the caches and

their respective environments occurs synchronously. The buffers have a finite size, but are sized

to be large enough to ensure that no state machine ever blocks on a full buffer. The directory

processes requests in the “DirBuffer” in an arbitrary order, and communicates commands to

the caches by the buffers “C1Buffer” and “C2Buffer”. The caches on their part, again process

commands in an arbitrary order. Finally, we note that a state machine need not necessarily

respond to all commands and requests at all points in time. In other words, a state machine is

allowed to defer the processing of some command or request, which is in a buffer, until some

condition has been enabled.

The working of the VI coherence protocol is perhaps best explained using the scenarios

shown in Figure 1.3. The protocol consists of two classes of state machines: The cache controller

state machines, whose behaviors are symmetric, denoted by C1, C2, . . . , Cn in Figure 1.3, and

a singular directory state machine, denoted by D in Figure 1.3. Each cache machine has a

state variable named cdata which contains the cached value of data at any point, and can be

undefined if the cache does not have an up-do-date cached copy of the data. The directory

5



C1
I

D
I

REQ
GET

RSP

{data := ddata}

cdata := data
ACK

owner := C1
V

V

(a) The first scenario for the VI protocol

C1
V

D
V
owner = C1

WB WBREQ{data := cdata}

ddata := data
owner := ⊥

WBACK
I

cdata := ⊥
I

(b) The second scenario for the VI protocol

C1
I

D
V
owner = C2

C2
V

REQ
GET

INV

INVACK

{data := cdata}

cdata := ⊥
Iddata := dataRSP

{data := ddata}

cdata := data
ACK

V
owner := C1
V

(c) The third scenario for the VI protocol

Figure 1.3: The scenarios for the VI protocol

machine has two state variables: one named ddata which represents the most up-to-date value

of the data when no cache in the system has a valid cached copy of the data; the other variable

named owner denotes which cache (if any) currently contains the most up-to-date value of the

data. The description of the VI coherence protocol is presented here in a slightly abstracted

fashion for ease of understanding. In an actual implementation, the directory state machine

would need a few more state variables to track the cache whose request is currently being

6



serviced. Note that the inputs from the environments for the caches are denoted by red arrows

in Figure 1.3.

The first scenario shown in Figure 1.3(a) describes the how the protocol behaves when a

cache requests ownership, i.e., read and write permissions, and no other cache currently has

ownership of the data block in question. In this situation, all the caches as well as the directory

are in the Invalid state, denoted by I. In this situation, the directory itself is assumed to possess

the most up-to-date copy of the data value. The cache requests the directory for access by

sending the directory a GET message and the directory responds immediately, with a response

message RSP, which contains the most up-to-date value of the data block, granting ownership

to the cache. Following this the cache unblocks the directory by sending an acknowledgment

message ACK. Upon receipt of the ACK message, the directory notes that the cache C1 is now

the owner of the block and transitions to the Valid state, denoted by V.

The second scenario shown in Figure 1.3(b) describes how a cache can relinquish ownership

on a given data block. In this situation, the cache under question must own the data block,

and thus it, along with the directory, must be in the Valid state denoted by V. The cache sends

a WBREQ message containing the most up-to-date value of the data block to the directory. The

directory updates its data block with the value received from the cache, and also notes that

no cache currently owns the data block in question, by setting its owner state variable to be

undefined. Following this, it responds with a WBACK message to the cache and transitions to

the Invalid state, denoted by I. The cache, upon receipt of the WBACK message invalidates its

local copy of the data, and also transitions to the Invalid state, denoted by I.

The third scenario, shown in Figure 1.3(c) describes how the protocol works when a cache

requests ownership of a data block, but another cache already has ownership of the block. This

situation is represented by the cache C1 being in the Invalid state, and the directory as well as

the cache C2 being in the Valid state. From the perspective of cache C1, this scenario is the same

as the one shown in Figure 1.3(a). However, the directory, upon receipt of the GET message

sends an invalidation message INV to the cache C2 which currently owns the data block. Upon

receipt of the INV message, cache C2 responds by sending an acknowledgment of invalidation,

INVACK, which also contains the most up-to-date value of the data block, to the directory and

transitions to the Invalid state. Its permissions have now been stripped by the directory. Upon

receipt of the INVACK message from C2, the directory updates its local copy of the data. From

this point on, the scenario proceeds in a manner similar to the scenario shown in Figure 1.3(a).

7



I q1 q2 q3 V

q4q5

q6

REQ? GET!
RSP?

cdata := data ACK!

WB?
WBREQ!

data := cdata
WBACK?

cdata := ⊥

INV?
INVACK!

data := cdata
cdata := ⊥

Figure 1.4: The incomplete state machine for the cache(s) in the VI protocol

I q0 q1 V

q2

q3q4

GET?
RSP!

data := ddata
ACK?

owner := src

WBREQ?
ddata := data
owner := ⊥WBACK!

GET?

INV!

IN
VA
CK
?

dd
at
a
:=

da
ta

Figure 1.5: The incomplete state machine for the directory in the VI protocol

In addition to the coherence property—which all cache coherence protocols ought to satisfy

— it is desirable that each cache coherence protocol satisfies a set of liveness requirements,

to ensure progress. In the case of the VI cache coherence protocol, the intuitive liveness

requirement is that a GET request from every cache eventually results in the receipt of an RSP

message with the most up-to-date value of the data by the cache that has issued a GET request.

Additionally, a similar liveness requirement is also desirable with respect to the WBREQ request,

which must eventually result in the receipt of a message that results in the cache transitioning

to the Invalid or I state.

1.1.2 Designing Distributed Protocols: The Easy Parts

Based on the three common-case scenarios shown in Figure 1.3, the programmer constructs the

state machines for the caches and the directory as shown in Figures 1.4 and 1.5 respectively.

8



C1
I

D
V
owner = C2

C2
V

REQ

WB

GET

INV

??? B

WBREQ

{dat
a := cdat

a}

A ???

Figure 1.6: A scenario implied by the scenarios shown in Figure 1.3 in the VI protocol

This translation is rather straight-forward and can even be automated in some cases, as we

shall discuss in Chapter 7. Upon attempting to verify the correctness of the protocol described

by the state machines in Figures 1.4 and 1.5, a verification tool presents the execution shown

in Figure 1.6 as a counterexample which results in a deadlock.

The execution shown in Figure 1.6 occurs as a result of the interleaving of the scenarios

shown in Figure 1.3(b) and Figure 1.3(c). Specifically, the state machines C1 and the directory

are proceeding according to the scenario shown in Figure 1.3(c). The cache C2 does not have

any knowledge about the state of other state machines in the system and proceeds according

to the scenario shown in Figure 1.3(b) upon receiving a WB command from its environment.

This results in a deadlock. the directory state machine is expecting an INVACK message, but

instead receives a WBREQ message. The state machine for the cache C2 is expecting a WBACK

message, but instead receives an INV message. Neither the cache nor the directory state

machines have a transition which describes what needs to happen in this circumstance, thus

resulting in a deadlocked protocol. Note that it is impossible to avoid this situation, owing to

the distributed nature of the protocol. This naturally leads us to a discussion about the difficult

parts of designing a protocol using the traditional methodology.

1.1.3 Designing Distributed Protocols: The Difficult Parts

To specify the correct behavior in the specific scenario shown in Figure 1.6, the programmer

needs to handle the behaviors in the state machines shown using dashed transitions to an

unknown target state in Figures 1.7 and 1.8. Note that the locations labeled A and B in

9



I q1 q2 q3 V

q4q5

q6

???

REQ? GET!
RSP?

cdata := data ACK!

WB?
WBREQ!

data := cdata
WBACK?

cdata := ⊥

INV?
cdata := ???

INV?
INVACK!

data := cdata
cdata := ⊥

Figure 1.7: Unhandled behavior in the cache state machine for the VI protocol

I q0 q1 V

q2

q3q4???

GET?
RSP!

data := ddata
ACK?

owner := src

WBREQ?
ddata := data
owner := ⊥WBACK!

GET?

INV!

IN
VA
CK
?

dd
at
a
:=

da
ta

WBREQ?
ddata := ???
owner := ???

Figure 1.8: Unhandled behavior in the directory state machine for the VI protocol

Figure 1.6 correspond to the state q4 in the directory state machine and the state labeled q5 in

the cache state machine respectively. The transitions represented by the dashed arrows thus

represent the new transitions that must be added to eliminate the deadlock in the execution

shown in Figure 1.6.

To eliminate the deadlocking execution, the programmer now needs to answer the following

correlated questions:

1. Which state must the cache state machine transition to upon receipt of an INV message in

the state q5?

10



2. How must the cdata state variable of the cache state machine be updated along this

transition?

3. Which state must the directory state machine transition to upon receipt of a WBREQ

message in the state q4, given the choice made earlier for the transition of the cache

machine upon receipt of the INV message in state q5?

4. How must the ddata and owner state variables of the directory state machine be updated

along this transition, again taking into consideration all the choices made so far in the

process of correcting the protocol.

Clearly, the right answers to these questions are correlated. Thus the programmer is forced

to perform some form of global reasoning about the protocol to describe the correct behavior.

Further, the programmermay need to perform this kind of reasoningmultiple times as additional

erroneous executions are discovered. We argue that this process is rather tedious and contributes

significantly to the difficulty of designing correct implementations of distributed protocols. We

now present an alternative methodology which makes use of program synthesis techniques to

make the process of designing distributed protocols easier.

1.2 An Alternative Approach to Protocol Design

Given the undecidability of the problem of synthesizing distributed protocols purely from

temporal logic specifications, we view the synthesis problem as one of completion in this

dissertation. This section provides an intuitive description of how this view can help in making

the difficult parts of protocol design easier.

1.2.1 Automating the Difficult Parts of Protocol Design

Figure 1.9 provides a high-level overview of the approach we propose in this dissertation.

The programmer specifies the behavior of the protocol using a combination of common-case

scenarios (which can be easily translated to incomplete state machines, either automatically, or

manually) and incomplete state machines constructed from the well-understood common-case

behavior of the protocol in question. Our approach also requires that the programmer formally

specifies the high-level safety and liveness requirements that the protocol is expected to satisfy.

We then leverage synthesis techniques to complete this incomplete protocol, or add behaviors

to this incomplete protocol provided by the programmer to obtain an implementation which is

correct by construction, i.e., the completed protocol admits at least all the behaviors admitted

11



C1
I

D
V
owner = C2

C2
V

REQ
GET

INV

INVACK

{data := cdata}

cdata := ⊥
Iddata := dataRSP

{data := ddata}

cdata := data
ACK

V
owner := C1
V

Scenarios

I q0 q1 V

q2

q3q4

GET?
RSP!

data := ddata
ACK?

owner := src

WBREQ?
ddata := data
owner := ⊥WBACK!

GET?

INV!

IN
VA
CK
?

dd
at
a
:=
da
ta

Incomplete State Machines

G (Req⇒ FRsp)

Correctness Specifications

Protocol
Completion

Code for
Protocol

Figure 1.9: The methodology proposed in this dissertation for designing distributed protocols

by the incomplete protocol specified by the programmer, and satisfies all the high-level safety

and liveness requirements.

This view of synthesis as a completion problem yields two advantages. First, the programmer

is freed from the tedium and complexity of the iterative debugging process, and has only to

specify an incomplete protocol, which is relatively easy. Second, we side-step the undecidability

of distributed protocol synthesis. The completion problem is itself decidable, provided that

the domains of all the state variables are finite. The decidability results from the fact that the

completion process does not attempt to add new control states or variables. Obviously, this

decidability comes at a cost: to be useful, the programmer needs to provide a “reasonably

complete” version of the protocol, i.e., it must be possible to obtain a correct protocol from

the incomplete protocol provided by the programmer, without the addition of new control

locations or state variables to the state machines in the protocol.

The upshot is that viewing the problem as one of completion, rather than synthesis, allows

us to leverage the fact that the easy bits of distributed protocol design can be done by the

programmer, to develop effective and useful algorithms that alleviate the difficulty of designing

12



C1
I

D
V
owner = C2

C2
V

REQ

WB

GET

INV

B

cdata := ⊥
I

WBREQ

{dat
a := cdat

a}

A

ddata := dataRSP

{data := ddata}

cdata := data
ACK

owner := C1
V

Figure 1.10: A possible completion of the implied scenario in the VI protocol

distributed protocols. This trade-off between programmer involvement and effectiveness of

automated algorithms for completion is a theme that we will explore throughout the subsequent

chapters in this dissertation.

Turning our attention back to the example of the VI cache coherence protocol, Figure 1.10

shows one possible way in which the implied scenario shown in Figure 1.6 can be extended,

such that all the correctness properties are satisfied. Essentially, the directory, treats the WBREQ

message in the same manner as it would treat an INVACK message from the cache, and updates

its local copy of the data with the value contained in the WBREQ message. The rest of the

scenario plays out between the directory and cache C1 as shown in Figure 1.3(c). The cache

C2, on its part, treats the INV message in the same manner as a WBACK message, invalidating

its local copy of the data and transitioning to the Invalid or I state.

Figures 1.11 and 1.12 show the cache and directory state machines, respectively, com-

pleted according Figure 1.10. Viewed as a completion problem, the algorithms described in

subsequent chapters of this dissertation are able to synthesize the state machines shown in Fig-

ures 1.11 and 1.12, starting from the incomplete state machines shown in Figures 1.4 and 1.5,

along with a set of high-level safety and liveness requirements.

13



I q1 q2 q3 V

q4q5

q6

REQ? GET!
RSP?

cdata := data ACK!

WB?
WBREQ!

data := cdata
WBACK?

cdata := ⊥

INV?

cdata
:= ⊥

INV?
INVACK!

data := cdata
cdata := ⊥

Figure 1.11: The completed state machine for the cache in the VI protocol

I q0 q1 V

q2

q3q4

GET?
RSP!

data := ddata
ACK?

owner := src

WBREQ?
ddata := data
owner := ⊥WBACK!

GET?

INV!

IN
VA
CK
?

dd
at
a
:=

da
ta

WBREQ?
ddata := data

Figure 1.12: The completed state machine for the directory in the VI protocol

Note that although the state machines for the VI protocol did not have any guards in their

transitions, this may not be the case in general. Some protocols might consist of state machines

which require transitions to be executed conditionally, based on some predicate on the state

variables of the machine in question. In the case of the VI protocol, these predicates can be

viewed as being universally true. In general, a completion algorithm would need to determine

these predicates, in addition to determining the target state and the updates to state variables

along a transition.

1.2.2 Feasibility and Effectiveness of Protocol Completion

The utility of the design methodology for distributed protocols that we have just introduced,

depends heavily on whether it is feasible to build tools that support the methodology and on

the effectiveness of such tools. Objectively, the proposed design methodology for distributed

14



protocols can be considered useful, provided that the answers to the following two questions

can be proven to be in the affirmative:

• Is it possible to develop effective algorithms to solve the distributed protocol completion

problem? A related question is whether these algorithms can be useful in assisting a

protocol designer in developing correct versions of real world protocols which are beyond

the capabilities of traditional approaches to reactive synthesis.

• Is it easier for a protocol designer to specify the behavior of the protocol using a combi-

nation of scenarios and incomplete state machines, along with a set of high-level formal

requirements in temporal logic?

Detailed experimental evaluations in the subsequent chapters of dissertation demonstrate that

the answer to the first question is indeed in the affirmative. The second question, on the other

hand, is rather subjective. While a large scale user study is beyond the scope of this dissertation,

we hope that the examples provided in this chapter, as well as in subsequent chapters, serve to

convince the reader that it is indeed easier to specify distributed protocols using the approach

that we propose.

To demonstrate affirmative answers to the questions just raised, we built and evaluated

several prototype tools. We now present a brief summary of the capabilities of each tool. A

more thorough exposition will be provided in subsequent chapters.

The first tool we built, dubbed transit, required the protocol designer or programmer to

be a part of the synthesis loop. The programmer was expected to provide local remedies to

specific, concrete erroneous executions uncovered during the verification process. Our case

studies demonstrate that this was useful in reducing the tedium of the debugging phase of

protocol design. In each case, the programmer was able to obtain a correct protocol, with

only a few rounds of interaction with the completion tool. The approach was found to be

very scalable, and was successfully used to specify the industrial SGI Origin cache coherence

protocol [LL97]. This is a large, scalable, real life protocol, with millions of reachable states,

and has been deployed in high-end systems from SGI.

Encouraged by the success of transit, we now sought to automate the process, and free

the programmer from being part of the synthesis loop. The second tool which we developed

only handles protocols where the state machines do not have any state variables. In this specific

setting, the completion problem can be viewed as a minimal Boolean satisfiability problem,

which in turn can be solved effectively by Integer Linear Program (ILP) solvers. Another feature

15



of this tool was it accepted inputs in the form of scenarios, which are as shown in Figure 1.3,

rather than as incomplete state machines. This tool was able to automatically complete several

text-book protocols, such as the alternating-bit protocol, protocols for consensus and even a

simple cache coherence protocol.

The limitation of this scenario based completion tool was not scalability: it synthesized

everything we threw at it with ease. However, it was rather difficult to specify larger protocols

with the restriction that state machines not have any variables. The third tool which we built

addresses this limitation, and also allows the programmer to specify symmetry constraints that

a completed protocol ought to satisfy. Using this tool, we were able to automatically synthesize

protocols for mutual exclusion, a moderately sized self-stabilization protocol, as well as the

modestly complex German/MSI cache coherence protocol.

While the automated algorithms are not as scalable as the algorithms which require the

programmer to be a part of the synthesis loop, they can still be useful in developing protocols of

moderate complexity. The experimental evaluations in subsequent chapters of this dissertation

will explore this trade-off between programmer involvement and scalability in greater depth.

1.2.3 Protocol Completion as Synthesis of Interpretations

Throughout this dissertation, we will take the view that the protocol completion is tantamount

to the problem of synthesizing interpretations for multiple, possibly correlated, unknown

functions. To make this view apparent, observe that the guard for each new transition to be

added can be viewed as a Boolean valued function over the state variables of the state machine

in question. Similarly, the updates to each state variable along a transition to be added can be

viewed as a function of the appropriate type over the state variables. Lastly, the target control

state to transition to can also be viewed as an update to a distinguished state variable — say a

variable named “location” — of a suitable enumerated type.

To illustrate this view, as well as to describe the subtleties of symmetry and fairness in some

detail, we consider another example: the Peterson’s mutual exclusion protocol. Figure 1.13(a),

describes this protocol, which manages two symmetric processes contending for access to a

critical section, labeled as the state L4 in Figure 1.13. Each process is parameterized by two

parameter variables Pm and Po (for “my” process id and “other” process id respectively), such

that Pm 6= Po. Both the parameters Pm and Po are of type processid, which is a symmetric type,

and they are allowed to take on values P0 and P1. We therefore have two instances of the

16



L1 L2 L3

L4

critical section

flag[Pm] := true turn := Po

flag[Po]∧ turn = Po

¬flag[Po]∨ turn = Pmflag[Pm] := false

(a) Parameterized Symmetric Process

L1 L2 L3

L4

critical section

flag[Pm] := true
turn :=

f(Pm, Po, flag, turn)

gwait(Pm, Po, flag, turn)

gcrit(Pm, Po, flag, turn)flag[Pm] := false

(b) Incomplete Process Sketch

Q1 Q2

true

PPID.location = L3

PPID.location 6= L4

(c) Liveness Monitor for Peterson’s Algorithm

Figure 1.13: Peterson’s Mutual Exclusion Protocol

symmetric process shown in Figure 1.13(a): P0, where (Pm = P0, Po = P1), and P1, where

(Pm = P1, Po = P0). P0 and P1 communicate through the shared variables turn and flag. The

variable turn has type processid. The flag variable is an array of Boolean values, indexed by

values of the type processid. The main objective of the protocol is to control access to the

critical section, represented by location L4, and ensure that both of the processes P0 and P1

are never simultaneously in the critical section, i.e., it is a safety violation for both P0 and P1

to be in state L4 at the same time. For clarity, the assignments to flag and turn are shown as

simple assignments in Figure 1.13, but in a faithful model of the Peterson’s algorithm, these

would be involve exchange of messages, with the shared variables flag and turn represented as

state machines for atomic registers.

17



The liveness monitor shown in Figure 1.13(c) captures the requirement that a process not

wait indefinitely to enter the critical section. The liveness monitor is itself parameterized by

the parameters Pm and Po in a manner similar to the processes, with each instance encoding

the liveness requirement for the appropriate process. The monitor accepts all undesirable runs

where a process has requested access to the critical section (i.e., the process in question is in

state L3), but never reaches state L4 — which corresponds to entering the critical section —

after reaching state L3. In other words, the monitor accepts an infinite execution where one

of the processes P0 or P1 is stuck in state L3 forever. Note that a run accepted by the monitor

may be unfair with respect to some processes. For instance, if process P0 is in state L3 and

could possibly transition to state L4, but the scheduler never schedules process P0, and process

P0 therefore never enters state L4, then this execution is unfair with respect to process P0.

Enforcing weak process fairness on P0 and P1, — i.e., if a process is enabled at every point in an

infinite execution, then it must be executed at some point in that execution — is sufficient to

rule out unfair executions, but not necessary. Enforcing weak fairness on the single transition

between (L3,L4) suffices to rule out all unfair executions which could possibly be accepted by

the monitor shown in Figure 1.13(c).

Now, to view the protocol completion problem as one of synthesizing interpretations, con-

sider the incomplete version of Peterson’s mutual exclusion protocol as shown in Figure 1.13(b).

Here, the condition under which a process is allowed to enter the critical section, the condition

under which a process must wait in location L3, and the update to the turn variable along the

edge from L2 to L3 have been replaced by the unknown functions gwait, gcrit and f respectively.

The target control locations along these transitions could also be unknown, but are retained

here for clarity.2

The functions gwait and gcrit represent unknown Boolean valued functions over the state

variables and the parameters of the process under consideration. The function f represents the

unknown update to the turn variable. Including the parameter variables Pm and Po as part of the

domain of gwait, gcrit and f is necessary to ensure that the completions synthesized by a tool for

processes P0 and P1 are symmetric. We defer a formal definition of what it means for protocols

and interpretations to be symmetric until Chapter 2. Now, given a set of fairness assumptions,

the protocol completion problem reduces to automatically discovering interpretations for these

unknown functions, such that the completed protocol satisfies the necessary mutual exclusion

2It would be rather confusing to see transition arrows all shooting up into nowhere.

18



property, and that every fair execution of the completed protocol is not an accepting run of the

liveness monitor shown in Figure 1.13(c).

Thus the protocol completion problem can indeed be viewed as a problem of synthesizing

interpretations for a set of correlated unknown functions. This provides an excellent segue for

the next section in this chapter, which motivates the development of a general framework for

describing such problems, independent of distributed protocols.

1.3 A Framework for Function Synthesis

Although synthesis of distributed protocols is the primary focus of this dissertation, during

course of research on this topic, we also had to develop scalable program synthesis techniques

to enable the synthesis of distributed protocols. As we have just explained, synthesizing guard

and update functions that constitute the descriptions of state machines in a distributed protocol

is tantamount to the synthesis of multiple unknown functions, the constraints on the behavior of

which can possibly be correlated. We observed that a lot of recent work on program synthesis for

different domains were essentially solving this very same problem— i.e., that of synthesizing an

unknown function (or a set of unknown functions) such that the synthesized function satisfies

some constraints — with a variety of independently developed (and possibly domain-specific)

algorithms. Unfortunately, there was no uniform way to compare the strengths and weaknesses

of each of these algorithms due to subtle differences in the way each of them required the

constraints over the unknown functions to be expressed, as well as the search space for the

interpretations or bodies of these unknown functions.

This led us to formulate the Syntax-Guided Synthesis (SyGuS) problem, which is intended

to be a general framework — along with a specification language — for expressing program

synthesis problems. The motivation for this was two-fold:

• Provide a common input language for specifying the constraints on, and the search space

for candidate interpretations or bodies of unknown functions to be synthesized. This format,

called SyGuS-IF, can then serve as a common input language for describing benchmarks to

evaluate tools implementing different program synthesis techniques.

• Spur research in program synthesis by organizing annual SyGuS competitions, in the same

manner that the SMTLIB and SMTCOMP initiatives have helped encourage research in

satisfiability modulo theory (SMT) solvers and theorem provers.

The intention is for SyGuS to be to program synthesis, what SMTLIB is to program verification.

19



This dissertation includes a description of the SyGuS problem as well as a description and

evaluation of two SyGuS solvers which implement algorithms based on enumerative strategies

— i.e., algorithms which systematically, and intelligently, enumerate function interpretations

or bodies from the search space until a solution is found — to solve instances of the SyGuS

problem. The SyGuS solvers may be considered as technologies which enable the construction

of higher-level and domain specific synthesis algorithms — such as algorithms for distributed

protocol completion and synthesis.

1.4 Contributions of this Dissertation

Having introduced the specific problems that the research to be described in this dissertation was

intended to tackle, we now provide a short summary of contributions made by this dissertation:

• We demonstrate that although the problem of full distributed reactive synthesis from

temporal logic specifications is hard, useful assistance can still be provided to the de-

signer/developer of such protocols by viewing the synthesis problem as one of completion. In

this world-view, the developer assists the synthesis algorithm by providing the information

which is natural and easy for a developer to provide. The tool in turn provides as much

automation as possible to the developer in automatically discovering the parts of the protocol

which the developer finds difficult to reason about.

• We describe and evaluate three tools which we have developed, which aim to make the

process of developing distributed protocols easier. Each of these tools differ in the level

of automation provided — and thus in their performance and scalability — and in the

restrictions they impose on the kinds of protocols they can handle.

• In evaluating and comparing the abilities of these tools, we explore the three-way trade-off

between the level of automation provided by the tools versus the amount of developer

involvement in the process of developing these protocols versus the scalability of the tools.

• We describe the SyGuS framework for specifying program synthesis problems in a general

manner, which is intended to be an enabling technology for higher-level synthesis techniques

to build upon. We also describe and evaluate algorithmic strategies based on systematic and

intelligent enumerative search to solve instances of the SyGuS problem.

The subsequent chapters of this dissertation are organized as follows. Chapter 2 introduces

some notation and definitions and provides a formal definition of the protocol completion

20



problem. Chapter 3 describes an elegant symbolic solution strategy for the protocol completion

problem, and explains why the strategy is not effective in a practical setting. Chapter 3

also describes the insights gained from implementing and experimenting with the symbolic

algorithm, which motivated the choices made with respect to the rest of the work described

in this dissertation. Chapters 4, 7 and 8 describe the solution approaches to the protocol

completion problem that we have implemented and evaluated. Chapter 5 describes a general-

purpose framework for program synthesis, called SyGuS, that arose from the work described

in Chapter 4, and Chapter 6 discusses some enumerative strategies for solving instances of the

SyGuS problem. Chapter 9 provides an overview of related work in the area and discusses

how the work described in this manuscript differs from earlier work. Chapter 10 summarizes

the contributions of this dissertation and discusses the avenues along which the work may be

extended in the future, and concludes with some reflections on the problems addressed in this

dissertation.

21



2
The Protocol Completion Problem

Having informally described and motivated the protocol completion problem in the previous

chapter, we now present a rigorous definition of the problem and set up the prerequisite

definitions and notation which will be used in the rest of this dissertation.

2.1 Objective

Our primary objective is to ease the task of developing correct distributed protocols. To

accomplish this, we leverage the fact that it is often easy to specify the behavior of a distributed

protocol in the common cases. We allow the developer to specify a skeleton or sketch of the

protocol that defines (i) the set of communicating processes that make up the protocol (ii) the

state variables of each communicating process that is part of the protocol, (iii) the communication

architecture of the protocol, which defines which processes can communicate, and along which

direction, as well as describes the properties of communication links between processes, (iv)

the behavior of the protocol in the common case scenarios, (v) the correctness properties, in the

form of invariants and liveness monitors, and (vi) a set of fairness requirements under which the

liveness properties ought to hold. Collectively, these artifacts describe an incomplete protocol.

We will assume that the incomplete protocol, by itself, does not satisfy the desired correctness

properties. The goal then, is to complete this incomplete protocol, by adding transitions where

required, such that the completion satisfies the desired correctness properties.

2.2 Formalization and Notation

We now formally define our notion of a state machine, executions of state machines, composition

of state machines and other related notions in this section. Our formalism draws on the notion of

22



input-output automata (I/O automata) described in the text-book by Lynch [Lyn96]. However,

we do not assume that the state machines (or I/O automata) are input-complete, i.e., are

required to handle any input at any point in their execution.

2.2.1 Types

Let B be a set of base types, where each type T ∈ B has finite cardinality, and is either (1) the

Boolean type, (2) an enumerated type, (3) a fixed range integer type, or (4) a symmetric type.

Symmetric types are similar to enumerated types, but the behavior of the system is considered

to be invariant under permutations of the symmetric type. The notion of a symmetric type

will be described in more detail in Section 2.2.7. Given a type T1 ∈ B, and a type T2, the

composite type array(T1, T2) contains all mappings from values of type T1 to values of type

T2. Given types T1, T2, . . . , Tn, the composite type record(T1, T2, . . . , Tn) denotes a type whose

values range over T1 × T2 × · · · × Tn. Given a fixed set of base types B, we define TB to be

the smallest set of types such that (1) TB ⊇ B and, (2) TB is closed under composition using

the array and record operators, i.e., if T1 ∈ B, and T2 ∈ TB, then array(T1, T2) ∈ TB, and if

T1, T2, . . . , Tn ∈ TB, then record(T1, T2, . . . , Tn) ∈ TB. We drop the subscript and use T to

refer to TB whenever the context is clear. Note that every type T ∈ TB has finite cardinality.

2.2.2 Function Symbols

Given a set of types T, we fix a set of function symbols F. Each function symbol f ∈ F has a

signature denoted d1×d2×· · ·dn → r, where d1,d2, . . . ,dn ∈ T represent the domain of the

function and r ∈ T represents the range of the function. A function symbol may have a fixed

interpretation, e.g., the symbol ‘+’ might denote integer addition, or the interpretation may be

unknown. We denote by U ⊆ F, the subset of the function symbols in F whose interpretations

are unknown. We define an expression to be a well-typed composition of function symbols

applied to values or variables of the appropriate types. Further, we assume that exactly one

state machine uses any given unknown function in its description. Thus for each unknown

function fu ∈ U, we can speak about the state machine that uses fu in its description.

2.2.3 Messages

We define Σ to be a message alphabet and mtype : Σ → T to be a function that maps each

message m ∈ Σ to the type of its payload. Further, we define ΣP to be a set of parame-

23



terized messages. A parameterized message has the form m 〈p1 : T1,p2 : T2, . . . ,pn : Tn〉,

where T1, T2, . . . , Tn ∈ T are symmetric types, and p1,p2, . . . ,pn are parameter vari-

ables whose values can range over T1, T2, . . . Tn respectively. For every parameterized

message m of the form m 〈p1 : T1,p2 : T2, . . . ,pn : Tn〉 ∈ ΣP, the corresponding instances

of the message m are in Σ. i.e., m 〈p1 7→ v1,p2 7→ v2, . . . ,pn 7→ vn〉 ∈ Σ, for all values

v1, v2, . . . , vn, where v1 ∈ T1, v2 ∈ T2, . . . , vn ∈ Tn. Further, any two instances of a para-

metric message have the same payload type. Specifically, if m is a parameterized message

as described above, then, we have that mtype(m 〈p1 7→ u1,p2 7→ u2, . . . ,pn 7→ un〉) ≡

mtype(m 〈p1 7→ v1,p2 7→ v2, . . . ,pn 7→ vn〉) for all {ui} and {vi}. Parameterized messages

themselves cannot be used as inputs to, or outputs of state machines, but instances of parame-

terized messages can. Instances of parameterized messages have restrictions on being inputs

and outputs of state machines as we will describe shortly.

2.2.4 Extended State Machines

An extended state machine (esm) A is a tuple A , 〈L, l0, I,O,V ,σ0,R,Fs,Fw〉, where:

• L is a finite set of locations.

• l0 is the initial location at which every execution of the esm begins.

• I ⊆ Σ is a set of input messages.

• O ⊆ Σ is a set of output messages, such that I ∩O = ∅.

• V is a finite set of typed state variables. For notational convenience, we define the typing

function typeof : V → T which maps each variable to its type.

• σ0 is an initialization function that maps each variable v ∈ V to an initial value s ∈ typeof(v).

• R , Ri ∪ Ro ∪ Rε is a set of transitions, partitioned into a set of input transitions Ri, a set

of output transitions Ro and a set of internal transitions Rε. Each transition r ∈ R is of the

form r , 〈l,m, guard, updates, l ′〉, where l, l ′ ∈ L are the initial and final locations for the

transition;m ∈ I for input transitions,m ∈ O for output transitions, andm = ε for internal

transitions; guard is a Boolean valued expression over the state variables V, and updates

maps each lvalue under consideration to an update expression of the appropriate type. If

r ∈ Ri, then updates maps each lvalue v ∈ V to an update expression which may only refer

to the variables in V ∪ {mp}, wheremp /∈ V refers to the payload of the incoming message

m. If r ∈ Ro, then updates maps each lvalue v ∈ V ∪ {mp} to an update expression, where

mp /∈ V is the payload of the outgoing message, and the update expressions may refer only

24



to variables in V. Finally, if r ∈ Rε, then updates maps each lvalue v ∈ V, to an update

expression which may only refer to variables in V .

• Fs,Fw ⊆ 2Ro∪Rε are sets of subsets of the transitions which characterize strongly and

weakly fair executions of the state machine A respectively.

Note that the guard and update expressions in the description of an esm might involve

functions whose interpretations are unknown. If the description of an esm contains at least one

occurrence of a function symbol fu ∈ U in any of its guards or in any of its update functions,

then we call such a description an esm sketch (esm-sk).

2.2.5 Executions

We define executions of an esm or esm-sk A by first choosing an interpretation I. An inter-

pretation I must satisfy the following: (1) I maps each function f ∈ F \ U to its predefined

or nominal interpretation, and (2) I maps each function fu ∈ U to some valid interpretation.

Given the set of state variables V of A, a valuation σ maps each each variable v ∈ V to a

value of the appropriate type, σ(v). Let SV be the set of all such valuations, given a set of

variables V . Given a valuation σ ∈ SV , a variable x /∈ V and a value vx ∈ typeof(x), we write

σ[x 7→ vx] ∈ SV∪{x} to denote the valuation that maps all variables y 6= x to σ(y) and maps x

to vx.

A state of an esm or esm-sk A is defined as a pair (l,σ), where l ∈ L and σ ∈ SV . Given

a transition r ∈ R, of A, of the form r , 〈l,m, guard, updates, l ′〉, and an interpretation I,

we say that r is enabled with respect to I at a state (p,σ), if and only if (1) substituting each

variable v ∈ V with σ(v) in the expression for guard results in the guard being equivalent to

true, and (2) p = l. Note that given an interpretation I, the expression guard defines a set of

valuations where the transition r is enabled. We write [[ guard, I ]] to denote this set. Similarly,

given the interpretation I, updates defines a function:

• [[ updates, I ]] : SV → SV∪{mp}, if r is an output transition; heremp /∈ V is a variable that

represents the payload of the outgoing messagem and has type mtype(m).

• [[ updates, I ]] : SV∪{mp} → SV , if r is an input transition; here mp /∈ V is a variable that

represents the payload of the incoming messagem and has type mtype(m).

• [[ updates, I ]] : SV → SV , if r is an internal transition.

We define an execution of A, under an interpretation I by describing the sequence of states

of A which result from the execution of successive transitions defined on A. We write:

25



• (l,σ) m?vm−−−−→ (l ′,σ ′) if and only if A has an input transition r ∈ Ri, which has the form

r , 〈l,m, guard, updates, l ′〉, σ ∈ [[ guard, I ]] , and [[ updates, I ]] (σ[mp 7→ vm]) ≡ σ ′.

• (l,σ) m!vm−−−−→ (l ′,σ ′) if and only if A has an output transition r ∈ Ro, which has the form

r , 〈l,m, guard, updates, l ′〉, σ ∈ [[ guard, I ]] , and [[ updates, I ]] (σ) ≡ σ ′[mp 7→ vm].

• (l,σ) ε−→ (l ′,σ ′) if and only if A has an internal transition r ∈ Rε, which has the form

r , 〈l,m, guard, updates, l ′〉, σ ∈ [[ guard, I ]] , and [[ updates, I ]] (σ) ≡ σ ′.

For notational convenience we write (l,σ) → (l ′,σ ′) if (1) there exist m and vm such that

(l,σ ′) m?vm−−−−→ (l ′,σ ′), or (2) there exist m and vm such that (l,σ) m!vm−−−−→ (l ′,σ ′), or (3)

(l,σ) ε−→ (l ′,σ ′). Further, given a named transition t , 〈l,m, guard, updates, l ′〉, we also write

(l,σ) t−→ (l ′,σ ′), to denote (l,σ) m?vm−−−−→ (l ′,σ ′), or (l,σ) m!vm−−−−→ (l ′,σ ′), or (l,σ) ε−→ (l ′,σ ′) if

t ∈ Ri, t ∈ Ro, or t ∈ Rε respectively.

An execution e of an esm or esm-sk A under an interpretation I is thus a sequence of

the following form: e , (l0,σ0) → (l1,σ1) → · · · → (ln,σn) → · · · , where for every j > 0,

(lj,σj) is a state ofA, (l0,σ0) is an initial state ofA, and for every j > 0, (lj,σj)→ (lj+1,σj+1).

An execution may be finite or infinite.

A state (l,σ) of an esm or esm-sk A is reachable under an interpretation I if and only if A

has a finite execution of the form (l0,σ0)→ (l1,σ1)→ · · · → (l,σ), under I. A state (l,σ) of A

is called deadlocked under an interpretation I if and only if there does not exist a state (l ′,σ ′)

such that (l,σ) → (l ′,σ ′). In other words, no transitions of A are enabled in a deadlocked

state. An esm or esm-sk A is called deterministic under an interpretation I if for every state

s = (l,σ) of A, if it is the case that there are multiple transitions enabled in state s, then each

of them is an input transition and each of them corresponds to the receipt of a distinct message.

Lastly, an infinite execution e , (l0,σ0)→ (l1,σ1)→ · · · of an esm or esm-sk A, under an

interpretation I is called a fair execution if and only if both of the following hold:

1. For each F ∈ Fw, if there exists a k such that for all i > k, some transition t ′ ∈ F is enabled

at state (li,σi) in e under I then there exists j > k, such that (lk,σk) t−→ (lk+1,σk+1) is a

step in e, where t ∈ F. Informally, if some transition in F ∈ Fw is enabled at every point in

an execution e under an interpretation I after a finite prefix of e, then some transition in F

must be taken in the infinite suffix of the execution e.

2. For each F ∈ Fs, if there exist infinitely many i in such that some transition t ′ ∈ F is

enabled at state (li,σi) in e, under I, then there must also exist infinitely many j such

that (lj,σj) t−→ (lj+1,σj+1) is a step in e, where t ∈ F. Informally, if some transition in

26



F ∈ Fw is enabled infinitely often in an execution e, under an interpretation I, then some

transition in F must also be executed infinitely often in the execution e.

2.2.6 Composition of esms and esm-sks
Let A1 , 〈L1, l01, I1,O1,V1,σ01,R1,Fs1,Fw1〉 be an esm or esm-sk. Given another esm or

esm-sk A2 , 〈L2, l02, I2,O2,V2,σ02,R2,Fs2,Fw2〉, the composition of A1 and A2, denoted

by A1 | A2, is defined only if (1) O1 ∩O2 ≡ ∅, and (2) V1 ∩V2 ≡ ∅. We define the composition

A = A1 | A2 as an esm A , 〈L, l0, I,O,V ,σ0,R,Fs,Fw〉, where:

• L = L1 × L2

• l0 = (l01, l02)

• I = (I1 ∪ I2) \ (O1 ∪O2)

• O = O1 ∪O2

• V = V1 ∪ V2

• σ0 is a function that maps each variable v ∈ V1 ∪ V2 to an initial value σ0(v) ∈ typeof(v)

and is defined as:

σ0(v) ,


σ01(v) if v ∈ V1

σ02(v) otherwise

• For every set Fi ∈ Fs1, we include a set Fi1 in Fs. Similarly, for every set Fi ∈ Fs2, we

include a set Fi2 ∈ Fs. For every set Fi ∈ Fw1, we include a set Fi1 ∈ Fw, and for every set

Fi ∈ Fw2, we include a set Fi2 ∈ Fw. The construction of these sets is described when we

describe how the transitions R are constructed.

• The set of transitions R = Ri ∪ Ro ∪ Rε, where R is partitioned into Ri, Ro and Rε, is

constructed according to the following rules. Note that the following rules also describe

how the fairness sets Fs and Fw are constructed:

– For every message m ∈ I, if m /∈ I2, then for every transition of t1 ∈ R1, which has the

form t1 , 〈l1,m, guard, updates, l ′1〉, and for every l2 ∈ L2, we include the transitions,

each of which has the form t , 〈(l1, l2),m, guard, updates, (l ′1, l2)〉 in Ri, and thus in R.

– For every message m ∈ I, if m /∈ I1, then for every transition of t2 ∈ R2, which has the

form t2 , 〈l2,m, guard, updates, l ′2〉, and for every l1 ∈ L1, we include the transitions,

each of which has the form t , 〈(l1, l2),m, guard, updates, (l1, l ′2)〉 in Ri, and thus in R.

– For every message m ∈ I1 ∩ I2, and for every pair of transitions (t1, t2), such that

27



t1 ∈ R1, t2 ∈ R2, where t1 has the form t1 , 〈l1,m, guard1, updates1, l ′1〉, and t2 is of

the form t2 , 〈l2,m, guard2, updates2, l ′2〉, we include a transition t which has the form

t , 〈(l1, l2),m, guard1 ∧ guard2, updates1; updates2, (l ′1, l
′
2)〉 in Ri and thus in R. Note

that the operator “;” denotes sequencing of updates.

– For every message m ∈ O1, if m /∈ I2, then for every transition t1 ∈ R1 which has the

form t1 , 〈l1,m, guard, updates, l ′1〉, and for every l2 ∈ L2, we include the transitions,

each of the form t , 〈(l1, l2),m, guard, updates, (l ′1, l2)〉 in Ro and thus in R. Further,

for each Fi ∈ Fs1, (Fw1) such that t1 ∈ Fi, for every l2 ∈ L2, we include the transition

t , 〈(l1, l2),m, guard, updates, (l ′1, l2)〉 in the set Fi1 ∈ Fs (respectively Fi1 ∈ Fw).

– Similarly, for every messagem ∈ O2, ifm /∈ I1, then for every transition t2 ∈ R2 which has

the form t2 , 〈l2,m, guard, updates, l ′2〉, and for every l1 ∈ L1, we include the transitions,

each of the form t , 〈(l1, l2),m, guard, updates, (l1, l ′2)〉 in Ro and thus in R. Further,

for each Fi ∈ Fs2, (Fw2) such that t2 ∈ Fi, for every l1 ∈ L1, we include the transition

t , 〈(l1, l2),m, guard, updates, (l1, l ′2)〉 in the set Fi2 ∈ Fs (respectively Fi2 ∈ Fw).

– For every messagem ∈ O1, ifm ∈ I2, then for every pair of transitions (t1, t2) such that

t1 ∈ R1 and t2 ∈ R2, where t1 and t2 have the form t1 , 〈l1,m, guard1, updates1, l ′1〉,

t2 , 〈l2,m, guard2, updates2, l ′2〉, we include a transition t which has the form t ,

〈(l1, l2),m, guard1 ∧ guard2, updates1; updates2, (l ′1, l
′
2)〉 in Ro, and thus in R. Further,

for each Fi ∈ Fs1 (Fw1) such that t1 ∈ Fi, we include the transition t in Fi1 ∈ Fs

(respectively Fi1 ∈ Fw).

– Similarly, for every message m ∈ O2, if m ∈ I1, then for every pair of transitions

(t1, t2) ∈ R1 × R2, where t1 and t2 have the form t1 , 〈l1,m, guard1, updates1, l ′1〉,

t2 , 〈l2,m, guard2, updates2, l ′2〉, we include a transition t which has the form t ,

〈(l1, l2),m, guard1 ∧ guard2, updates2; updates1, (l ′1, l
′
2)〉 in Ro, and thus in R. Further,

for each Fi ∈ Fs2 (Fw2) such that t1 ∈ Fi, we include the transition t in Fi2 ∈ Fs

(respectively Fi2 ∈ Fw).

– For every transition t1 ∈ R1 which is of the form t1 , 〈l1, ε, guard, updates, l ′1〉, and for

every l2 ∈ L2, we include in Rε and thus in R, every transition t which is of the form

t , 〈(l1, l2), ε, guard, updates, (l ′1, l2)〉. Further, for each Fi ∈ Fs1 (Fw1) such that t1 ∈

Fi, for every l2 ∈ L2, we include the transition t , 〈(l1, l2), ε, guard, updates, (l ′1, l2)〉 in

Fi1 ∈ Fs (respectively Fi1 ∈ Fw).

– Similarly, for every transition t2 ∈ R2 of the form t2 , 〈l2, ε, guard, updates, l ′2〉, and

28



for every l1 ∈ L1, we include every transition t, each of which has the form t ,

〈(l1, l2), ε, guard, updates, (l1, l ′2)〉 in Rε and thus in R. Further, for each Fi ∈ Fs2

(Fw2) such that t2 ∈ Fi, for every l1 ∈ L1, we include the transition t of the form

t , 〈(l1, l2), ε, guard, updates, (l1, l ′2)〉 in Fi2 ∈ Fs (respectively Fi2 ∈ Fw).

Because the composition of two esms or esm-sks is again an esm or esm-sk, all the earlier

definitions regarding reachability, deadlocks, executions and fairness are still valid. Note that

the composition operator “|” is associative and commutative.

2.2.7 Symmetry and Symmetric Types

Distributed protocols often exhibit symmetric behavior, e.g., the behavior of the state machines

in Peterson’s mutual exclusion algorithm described in Section 1.2.3 exhibits symmetry. To

allow the programmer to express such symmetric behavior, we use symmetric types, which are

similar to the scalarset construct used in the Murϕ model checker [ID96].

A symmetric type T ∈ T is characterized by (1) its name, and (2) its cardinality, |T |, which

is a finite natural number. The only operations permitted on values of a symmetric type are

comparisons for equality and disequality between two values. Given a collection of state

machines parameterized by a set of symmetric types, e.g., the state machines P0 and P1 in

Peterson’s algorithm, the behavior of the system is required to be invariant under permutations

(i.e., renaming) of the parameter values.

Given a symmetric type T , let perm(T) be the set of all permutations πT : T → T , over the

symmetric type T . For ease of notation, we define πT (v) = v for values v /∈ T , i.e., values whose

type is not T , provided that the type of v is not an array or record type. If the type of v is a record

type, then πT (v) is defined as the record value obtained by applying πT on each field of v. If the

type of v is an array type, whose index type is not T , then πT (v) is defined as the array value

obtained by applying πT recursively to all the elements of v. If the type of v is an array type

whose index type is T , then πT (v) is defined as the value obtained by first recursively applying

πT to all the elements of v and then permuting the array elements themselves according to

πT , i.e., for all j ∈ T , πT (v)[πT (j)] ≡ πT (v[j]). Given the collection of symmetric types in the

system, T1, T2, . . . , Tn ∈ B, we define the set of system wide permutations, perm(TB), as the

composition of the permutations over the individual types, πT1 ◦ πT2 ◦ · · · ◦ πTn .

esms, esm-sks and messages may be parameterized by a list of parameter variables,

each of a symmetric type. The semantics of such parameterization is that there exists one

29



instance of the object for every possible value that the parameter variables can take. Consider

a parameterized messagem 〈p1 : T1,p2 : T2, . . . ,pn : Tn〉. Here p1,p2, . . . ,pn are parameter

variables which can take values of types T1, T2, . . . , Tn respectively. Then for every possi-

ble list of values 〈v1, v2, . . . , vn〉, where vi ∈ Ti, and i ∈ [1,n], there exists an instance

m 〈p1 7→ v1,p2 7→ v2, . . . ,pn 7→ vn〉 of the parameterized message m. The semantics of a

parameterized esm or esm-sk are similar, except that the parameter variables pi are available

for use as read-only variables within the guards and updates of the esm or esm-sk.

Given the set of types TB an interpretation I is said to be symmetric with respect to TB if

and only if for all fu : d1,d2, . . . ,dn → r ∈ U, for all π ∈ perm(TB), and for all e1 ∈ d1, e2 ∈

d2, . . . , en ∈ dn, we have that π(fu(π(e1),π(e2), . . . ,π(en))) ≡ fu(e1, e2, . . . , en). An esm

or esm-sk A is said to be symmetric with respect to TB, if and only if for any interpretation I

such that I is symmetric with respect to TB, and for all π ∈ perm(TB), every execution of A

under I of the form:

e , (l0,σ0) ∗1−→ (l1,σ1) ∗2−→ · · · ∗n−→ (ln,σn)
∗n+1−−−→ · · ·

where ∗i is one ofmi?vmi
ormi!vmi

or ε, implies that the permuted execution of the form:

π(e) , (π(l1),π(σ1))
π(∗1)−−−→ (π(l2),π(σ2))

π(∗2)−−−→ · · · π(∗n)−−−−→ (π(ln),π(σn))
π(∗n+1)−−−−−→ · · ·

is also admitted by A under the same interpretation I. Here π(∗i)−−−→ represents a transition along

which the instances of messages parameterized by symmetric types and message payloads

are also permuted according to the permutation π. Further, we also require that e is a weakly

(respectively, strongly) fair execution of A if and only if π(e) is a weakly (respectively, strongly)

fair execution of A. In other words, we require the strong and weak fairness assumptions on A

to be symmetric as well.

Our framework allows the programmer to describe protocols which are symmetric according

to the notion of symmetry just described. We ensure that symmetry breaking constructs are

not used by enforcing syntactic restrictions on the description of esms and esm-sks. This is

done in a manner similar to the what has been described in earlier work [ID96]. Further, we

also ensure that any interpretations I that are generated during the process of synthesis are

such that they satisfy the symmetry assumptions made on the esm-sks that they are a part of,

as we shall describe in later sections.

30



2.2.8 Requirements and Specifications

We now turn our attention to the way in which requirements — i.e., the properties that we

expect from a correct protocol — are specified. The techniques proposed in this dissertation

support requirements expressed either as Linear Temporal Logic (ltl) formulas, or directly as

Büchi monitors.3 To make the presentation self-contained, we now briefly describe the syntax

and semantics of ltl and describe how we use monitors (possibly constructed from the ltl

formulas) to characterize the correctness of protocols.

Linear Temporal Logic

Given a set of atomic propositions AP, the syntax of Linear Temporal Logic (ltl) formulas over

these atomic propositions is given by the following rules:

• If p ∈ AP, then p is an ltl formula

• If ϕ1 and ϕ2 are ltl formulas, then so are ¬ϕ1, ϕ1 ∧ϕ2, Xϕ1, and ϕ1 Uϕ2.

Other commonly used operators and connectives can be defined in terms of these basic operators

using the standard equivalences. We list a few of them here:

• ϕ1 ∨ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)

• Fϕ1 ≡ trueUϕ1

• Gϕ1 ≡ ¬F¬ϕ1

• ϕ1 Rϕ2 ≡ ¬ (¬ϕ1 U¬ϕ2)

• ϕ1Wϕ2 ≡ (ϕ1 Uϕ2)∨ Gϕ1

We define the semantics of an ltl formula over executions of esms and esm-sks. Given the set

of types T, a set of function symbols F, an esm or esm-sk A = 〈L, l0, I,O,V ,σ0,R,Fs,Fw〉,

we let the set of atomic propositions AP be the set of all Boolean valued expressions over

V ∪ {loc} which do not involve Boolean connectives. Here, loc /∈ V is a distinguished variable

that tracks the location of A, whose values are allowed to range over L, and the only operation

allowed on this type is comparison of values of equality. Given a state s , (l,σ), where l ∈ L

and σ ∈ SV , an interpretation I, and an atomic predicate p ∈ AP, we say that s satisfies p under

the interpretation I, written as s
I
p if and only if p ′, which is obtained by substituting l for

every occurrence of loc in p and σ(v) for every occurrence of v in p, for each variable v ∈ V

is equivalent to true. We extend the notion of satisfiability to arbitrary Boolean expressions

3Every ltl formula can be translated into a (possibly non-deterministic) Büchi monitor, but there exist Büchi
monitors/automata which do not have an equivalent ltl formula.

31



— which are just atomic propositions composed with Boolean connectives — in the natural

manner.

Given an infinite execution e , s0 → s1 → · · · of A, under an interpretation I, where

si , (li,σi) for i > 0, the satisfaction semantics of an ltl formula ϕ over e are inductively

defined as follows, where ϕ1 and ϕ2 are subformulas of ϕ, and p is an atomic proposition; i.e.,

p ∈ AP. Note that we use the notation e
I
ϕ to denote that the execution e (also under the

interpretation I) satisfies the ltl formula ϕ under the interpretation I.

• If ϕ ≡ p, then, e
I
p if and only if s0 I

p.

• If ϕ ≡ ϕ1 ∧ϕ2, then e I
ϕ if and only if e

I
ϕ1 and e I

ϕ2.

• If ϕ ≡ ¬ϕ1, then e I
ϕ if and only if it is not the case that e

I
ϕ1.

• If ϕ ≡ Xϕ1 then e I
ϕ if and only if s1 I

ϕ1.

• If ϕ ≡ ϕ1 Uϕ2, then e I
ϕ if and only if ∃j > 0 (sj I

ϕ2 ∧ ∀i < j (si I
ϕ1)).

The semantics for the other operators such as F, G, R and W, can be deduced by using the

equivalences mentioned earlier to express ltl formulas involving these operators in terms of

the basic operators X and U.

We can now define the satisfaction semantics of an esm or esm-sk A with respect to an

ltl formula ϕ as follows: A satisfies ϕ, under an interpretation I, written A
I
ϕ if and only

if for every execution e of A (also under the interpretation I), we have that e
I
ϕ.

Algorithmically, this check is usually performed by translating the negation of the ltl

formula, i.e., ¬ϕ, into a Büchi monitor with accepting states and checking if the synchronous

product of the Büchi monitor andA admits a fair accepting cycle. We defer a detailed description

of this model-checking algorithm until Section 8.3, but we now provide a brief description of

the (Büchi and safety) monitors used in this process.

Monitors

Every ltl formulaϕ can be translated into a (possibly non-deterministic) Büchi automaton (BA)

or Büchi monitor which can then be used to algorithmically check if a given transition system

satisfies the ltl formula ϕ. The translation from ltl to BA takes time exponential in the size of

the ltl formula, and has been studied extensively in literature [WVS83, LP85, VW94, DGV99,

EH00, SB00, GO01, BKRS12, Dur14], and will not be covered in detail in this dissertation.

We will assume that the requirements which are specified using ltl formulas have already

been translated into Büchi monitors, whose form we describe in this section. This translation

32



can be accomplished using widely available tools like ltl2ba [GO01], ltl3ba [BKRS12], or

spot [Dur14] for instance.

Consider an esm or esm-sk A , 〈L, l0, I,O,V ,σ0,R,Fs,Fw〉. Recall that SV is the set of

all valuations of the set of variables V. We denote the set of all states of A as S , L× SV . A

monitor over A is an automatonM , 〈Q,q0,∆〉. HereQ is the set of automaton states, q0 ∈ Q

is the initial state and ∆ ⊆ Q × S × Q is a transition relation. We denote the synchronous

composition of A withM as A ‖ M. The semantics of such a synchronous composition are

standard: Each time A makes a transition,M makes a transition as well. Suppose the current

state ofM is q, and the state of A is s ∈ S, thenM can (non-deterministically) transition to

any state q ′ such that (q, s,q ′) ∈ ∆. The notion of an execution is extended in the natural

manner to the product A ‖M, by augmenting the state with a component denoting the state

q ∈ Q of the monitorM, and we write (l,σ,q) −→ (l ′,σ ′,q ′), where the locations l, l ′ ∈ L,

the valuations σ,σ ′ ∈ SV and q,q ′ ∈ Q if and only if (l,σ) −→ (l ′,σ ′), and (q, (l,σ),q ′) ∈ ∆.

The notion of reachability also follows naturally from the extended notion of an execution.

The composition A ‖M inherits the the fairness assumptions from A, and an execution e of

A ‖M under an interpretation I is fair if and only if the projection of e onto A is fair, under

the interpretation I.4

A safety monitor is a monitor augmented with a set of error states. In other words, a safety

monitorMs , 〈Q,q0,∆,Qerr〉, where Qerr ⊆ Q is a set of error states. An finite execution e

of A ‖Ms is called erroneous if the monitorMs is in a state q ∈ Qerr in the last state of the

execution e. Given an interpretation I, A satisfiesMs under the interpretation I, written as

A
I
Ms, if and only if A ‖Ms admits no erroneous executions under the interpretation I, i.e.,

a state where the monitor component of the state q ∈ Qerr is not reachable.

A liveness monitor is a monitor augmented with a set of accepting states. In other words,

a liveness monitor Ml , 〈Q,q0,∆,Qacc〉, where Qacc ⊆ Q is a set of accepting states. An

infinite execution e of A ‖ Ml is called an accepting execution if the monitor Ml visits an

accepting state infinitely many times in e. Given an interpretation I, we say that A satisfiesMl

under the interpretation I, written as A
I
Ml if and only if every fair execution of A ‖Ml,

under the interpretation I, is not an accepting execution.

Although we have made a distinction between liveness and safety monitors for ease of expo-

sition, especially in the later chapters of this dissertation, we note that both safety and liveness

4An execution e of A ‖M is projected onto A by simply dropping the component forM in each state and each
transition of e.

33



monitors can be expressed as (possibly non-deterministic) Büchi monitors with accepting states.

This is immediately obvious in the case of liveness monitors of the form we have described

above: a liveness monitor is itself a Büchi monitor with Qacc as the set of accepting states of

the Büchi monitor. One can express a safety monitor as a Büchi monitor by setting Qacc = Qerr

and adding a self-loop from every state q ∈ Qerr, i.e., by adding (q, (l,σ),q) for every q ∈ Qerr

and for every (l,σ) ∈ S to ∆, thereby allowing it to accept infinite executions. Further, we

also allow monitors to be symmetric in the same manner as for esms and esm-sks. Finally, we

say that an esm or esm-sk A satisfies the ltl specification ϕ under an interpretation I, if and

only if A
I
M, whereM is the Büchi monitor corresponding to the ltl formula ¬ϕ.

2.3 Problem Statement

We are given A1,A2, . . . ,An, where each Ai is either an esm or an esm-sk, over a set of types

TB and a function vocabulary F. We are also given a set of safety monitorsMs1,Ms2, . . . ,Msm,

and a set of liveness monitorsMl1,Ml2, . . . ,Mlk. The objective is to find an interpretation I

such that (1) the product A , A1 | A2 | · · · | An is deadlock free under the interpretation I,

(2) each esm-sk A ∈ {Ai}, i ∈ [1,n] is deterministic under the interpretation I, (3) for each

Msi, i ∈ [1,m], A
I
Msi, (4) for eachMlj, j ∈ [1,k], A

I
Mlj, and (5) I is symmetric with

respect to TB.

Note that we require that the interpretation I is such that each esm-sk under I is deter-

ministic. This is based on our observation that typically, the esms which cooperate to achieve

the goals of a distributed protocol are deterministic individually. The non-determinism in such

protocols arises out of (1) non-determinism in the scheduler, and (2) non-determinism in the

environment esms. We assume that environment esms are completely specified, and we will

therefore never be required to complete environment esm-sks.

The next chapter presents an elegant symbolic algorithm to obtain all interpretations I

which satisfy the requirements set forth in the problem statement. Unfortunately, this algorithm

is not effective in practice. We describe the reasons why this is so, and also elaborate on the

insights obtained by implementing the algorithm and experimenting with a simple cache

coherence protocol. These insights also explain some of the choices made in the rest of the

work that this dissertation describes.

34



3
A Symbolic Strategy via Parametrized Transitions

Given that the problem defined in Chapter 2 only involves finite types, thereby rendering the

space of solutions finite, one can immediately imagine an elegant symbolic solution to find all

interpretations which satisfy the requirements set forth in Section 2.3. Such a solution would

have the following high level outline:

1. Translate the descriptions of the esms and esm-sks into a parameterized symbolic transi-

tion system, which could be represented using Reduced Ordered Binary Decision Diagrams

(henceforth referred to as ROBDDs or BDDs) [Bry85, Bry86, BRB90]. The values of the

parameters determine the interpretation I which is chosen. The set of all interpretations is

finite, given that the domains and ranges of all the function symbols f ∈ F are finite, and

thus the introduced parameters can only take on a finite number of values, since every

value corresponds to a distinct interpretation. The values for these parameters are encoded

symbolically as well, and are initially left unconstrained, i.e., any interpretation is allowed.

2. Translate the requirements expressed in ltl into a tester transition system as described in

the work by Kesten et. al. [KPRS06]

3. Interleave the symbolic model-checking algorithm described in the work by Kesten et.

al. [KPRS06] with steps to (symbolically) prune parameter valuations which result in

incorrect interpretations being chosen, until the model-checking succeeds. At this point,

the parameter valuations that we are left with correspond to all interpretations that satisfy

the requirements set forth in Section 2.3.

This strategy only handles requirements expressible in ltl, whereas the problem statement

outlined in Section 2.3 handles requirements expressed as arbitrary Büchi monitors. Given that

there exist Büchi monitors which do not have an equivalent ltl formula, this strategy solves

35



a restricted version of the problem defined in Section 2.3. The strategy can be extended to

handle arbitrary Büchi monitors in a relatively straightforward manner. However, the objective

of presenting this solution strategy here is to highlight the complexity of distributed protocol

completion and glean insights that lead to developing more effective algorithmic strategies. So,

we will focus only on ltl requirements and a slightly simplified version of the original problem

in this chapter enabling us to leverage the proofs of correctness from earlier work [KPRS06].

3.1 A Simplified, Finite Version of the Problem

Consider the following simplified version of the problem defined in Section 2.3: Each esm

or esm-sk has no state variables, i.e., V = ∅. Further, we assume that messages do not have

a payload, i.e., mtype(m) = unit for all messagesm ∈ Σ. Essentially, the state machines are

now simply finite-state machines or finite-state machine sketches, and we will refer to them

as fsms or fsm-sks respectively. Each transition t ∈ R of such an fsm or fsm-sk will have

the form t , 〈l,m, guard, l ′〉. With no state variables and message payloads, the updates

component of a transition is no longer relevant. The guard in this setting is always the Boolean

constant true in the case of an fsm, but is allowed to be a propositional variable in the case of

an fsm-sk, where setting the propositional variable to true indicates that t ∈ R and setting

to false indicates that t /∈ R. An interpretation I in this simplified setting is then simply

a valuation for these unknown guards. Note that even in this simplified setting, the rest of

the definitions regarding composition, symmetry, executions and fairness remain unchanged.

Thus an fsm or fsm-sk A is the tuple A , 〈LA, lA0, IA,OA, FAs, FAw〉. We assume that the

specification is provided as a single ltl formula ϕ,5 over the single distinguished variable loc,

which represents the location of the fsm-sk A.

We now briefly outline each of these steps of the symbolic solution strategy for this simplified

version of the problem. We then explain why this strategy is not satisfactory, even for this

simplified version of the problem, based on empirical observations.

3.2 The Parameterized Symbolic Transition System

Given an fsm or fsm-sk A, which has the form A , 〈L, l0, I,O,R, FAs, FAw〉, which itself

could possibly be the composition of two or more fsms or fsm-sks, we now outline how

5If A is required to satisfy multiple ltl formulas, then these can be expressed as a single ltl formula which is
the conjunction of the given formulas.

36



to represent A as a symbolic transition system. We denote the symbolic transition system

corresponding to A as Ã ,
〈
Ṽ , l̃0, R̃, F̃As, F̃Aw

〉
, where:

• Ṽ is the set of variables in the symbolic transition system and we use Ṽ ′ to represent the

primed version of the variables in Ṽ . The primed version of a variable denotes the value of

the variable in the next state. We require them to distinguish between the current and next

values of variables in a symbolic representation.

• l̃0 is the symbolic representation of the set of initial states of the symbolic transition system.

• R̃ is the symbolic transition relation that relates the values in the next state, represented by

the primed version of the variables, i.e., Ṽ ′, to their values in the current state, represented

by the unprimed version of the variables, i.e., Ṽ .

• F̃As is a set of pairs of predicates over Ṽ , with one pair encoding each set F ∈ FAs.

• F̃Aw is a set of predicates over Ṽ , with one predicate encoding each set F ∈ FAs.

We will use BDDs to represent l̃0, R̃, F̃As and F̃Aw in our presentation. It will be convenient

to partition R into the sets Rfixed and Rsynth, where Rfixed consists of the transitions with “fixed”

interpretations, i.e., where guard is the Boolean constant true, and Rsynth consists of the set of

transitions whose interpretations are to be synthesized, i.e., where guard is a Boolean valued

variable whose value needs to be determined. The usual determinism constraints outlined

in Chapter 2 are implicitly assumed in the rest of this chapter. We note that these can also

be specified using suitable constraints on Rsynth and fit well into the BDD based algorithms

described in this chapter.

We define the set of variables of Ã as Ṽ , {loc, lastt}∪ G̃, where loc and lastt, represent the

location of the fsm A, and the identity of the transition that was taken to arrive at the current

state, respectively. The set of variables G̃ = {g1,g2, . . . ,gk}, where k = |R|, consists of Boolean

valued variables, where gi represents the guard of the transition ti, for each ti ∈ R. The

lastt variables are necessary because symbolic model checking algorithms are more naturally

suited to handle handle state-based fairness requirements, rather than transition-based fairness

requirements. By adding the variable lastt, we are essentially enabling the translation of

transition-based fairness into state-based fairness.

We now describe how each of the symbolic representations for l̃0, R̃, F̃Aw, and F̃As are

constructed, starting from a definition of A. We present the predicates over the set of variables

V as well as the primed variables V ′ that correspond to the definition of each of these. It is

straightforward to use BDD operations, using a BDD library like CUDD [SB00], for example, to

37



construct BDDs corresponding to these predicates. The set of initial states of Ã, can be encoded

as follows:

l̃0 ≡

(loc = l0) ∧
∧

ti∈Rfixed

gi


Each transition ti ∈ R of the form ti ,

〈
li,mi, guardi, l ′i

〉
is encoded symbolically as:

(loc = li)∧ gi ∧
(
loc ′ = l ′i

)
∧
(
lastt ′ = ti

)
∧ g ′i = gi

The constraint g ′i = gi ensures that the interpretation remains constant across transitions. The

complete symbolic transition relation R̃ is then simply the disjunction of the above encoding

over all the transitions t ∈ R:

R̃ ≡
∨
ti∈R

(
(loc = li)∧ gi ∧

(
loc ′ = l ′i

)
∧
(
lastt ′ = ti

))
Consider a fairness assumption Fw ∈ Fw, where Fw = {t1, t2, . . . , tn}, we symbolically encode

Fw, denoted F̃w, using a single predicate of the form:

F̃w ≡ ¬enabled(Fw)∨ taken(Fw)

where enabled(Fw) ≡
∨
ti∈Fw (loc = li ∧ gi), with li and gi referring to the initial location

and the Boolean variable corresponding to the guard of the transition ti, and the predicate

taken(Fw) ≡
∨
ti∈Fw lastt = ti. The predicate enabled(Fw) encodes whether any transition

in Fw can be executed, and taken(Fw) encodes whether the current state has been reached by

executing any transition in the set Fw.

For strong fairness assumptions Fs ∈ Fs, where Fs = {t1, t2, . . . , tn}, we symbolically

encode Fs, denoted F̃s, using a pair of Boolean valued formulas p and q, where p , enabled(Fs)

and q , taken(Fs), where enabled and taken are as defined above. The predicate encodings

of fairness assumptions will be used to characterize if a non-empty terminal strongly connected

component is fair. We refer the reader to earlier work [KPRS06] for a more detailed explanation.

3.3 Construction of the ltl Tester

We now describe how to construct a tester — which is itself a transition system augmented

with a set of weak fairness assumptions — corresponding to an ltl formula ϕ. We denote the

38



tester for the ltl formula ϕ as Tϕ. This description has been adapted from earlier work by

Kesten et. al. [KPRS06].

The symbolic transition relation of Tϕ refers to variables in Ṽ and Ṽ ′, but does not constrain

either. Tϕ also refers to variables in the set Xϕ ∪X ′ϕ, where Xϕ is a set of Boolean valued vari-

ables, and is defined as Xϕ , {xp |p is a principally temporal sub-formula of ϕ}. The primed

version of the variables in Xϕ is denoted by the set X ′ϕ. A (sub-)formula is principally temporal

if its top level operator is one of U or X. If ψ is a sub-formula of ϕ (note that we consider ϕ to

be a sub-formula of itself), then we denote it as ψ ∈ ϕ. To define the transition relation of Tϕ,

we define a mapping χ which maps each sub-formula ψ of ϕ to an assertion over Ṽ , defined as

follows:

χ(ψ) =



ψ if ψ is an atomic proposition

¬χ(p) if ψ ≡ ¬p

χ(p1)∨ χ(p2) if ψ ≡ p1 ∨ p2

xψ if ψ is principally temporal

(3.1)

The transition relation for Tϕ is as shown below:

R̃ϕ ≡
∧

Xp∈ϕ

(
xXp ↔ χ ′(p)

)
∧

∧
pUq∈ϕ

(
xpUq ↔

(
χ(q)∨

(
χ(p)∧ x ′pUq

)))
(3.2)

where χ ′(p) refers to the assertion corresponding to the sub-formula p, but where all the

variables are substituted with their primed variants. Finally, for each pUq ∈ ϕ, we add the

following (symbolic) weak fairness assumption:

χ(q)∨ ¬xpUq (3.3)

to Tϕ and set the initial condition for Tϕ to be true.

To summarize, the symbolic transition system for the tester for the ltl formulaϕ is denoted

as Tϕ ,
〈
Ṽϕ, l̃ϕ0, R̃ϕ, F̃ϕs, F̃ϕw

〉
, where:

• Ṽϕ = Ṽ ∪ Xϕ.

• l̃ϕ0 = true

• R̃ϕ is constructed as shown in (3.2).

• F̃ϕs = ∅, and

• The set F̃ϕw consists of the predicates shown in (3.3), one for each sub-formula ψ ∈ ϕ,

39



such that the sub-formula ψ is an until sub-formula, i.e., it has the form pUq, where the

sub-formulas p and q are the ones referred to in the Formula (3.3).

3.4 The Symbolic Synthesis Algorithm

Given two symbolic transition systems Ã0 and Ã1, where Ã0 ,
〈
Ṽ0, l̃00, R̃0, F̃0s, F̃0w

〉
and

Ã1 ,
〈
Ṽ1, l̃10, R̃1, F̃1s, F̃1w

〉
, we define the synchronous product of Ã0 and Ã1 as the symbolic

transition system Ã0 || Ã1 ,
〈
Ṽ0 ∪ Ṽ1, l̃00 ∧ l̃10, R̃0 ∧ R̃1, F̃0s ∪ F̃1s, F̃0w ∪ F̃1w

〉
. We present

the symbolic synthesis algorithm in terms of manipulations on sets of states. A state in the

setting of a symbolic transition relation Ã over a set of variables Ṽ can be considered a valuation

of the variables in Ṽ . Let S
Ṽ
be the set of all valuations given a set of variables Ṽ , i.e., S

Ṽ
is

the set of all functions σ which maps each variable v ∈ Ṽ to a value of the appropriate type. For

every predicate p over the variables Ṽ , we denote by ||p|| ⊆ S
Ṽ
the set of valuations that satisfy

p. It follows that ||true|| = S
Ṽ
. A predicate like R̃ over the variables Ṽ ∪ Ṽ ′ can be viewed as a

binary relation over S
Ṽ
, with the primed variables representing the second components of the

pairs in the relation. Given a set S ⊆ S
Ṽ
and a binary relation R ⊆ S

Ṽ
×S

Ṽ
, we define R∩ S

as R ∩ S , R ∩ (S×S
Ṽ
)

Having established the correspondence between sets and relations with predicates, we

define the operator img(P,R) , {s | (s0, s) ∈ R∧ s0 ∈ P}, where P ⊆ S
Ṽ
and R ⊆ S

Ṽ
×S

Ṽ
.

If P and R are represented symbolically as P̃ and R̃ which are predicates over Ṽ and Ṽ ∪ Ṽ ′

respectively, then the symbolic equivalent of the img operator is given by:

unprime
(
∃ v1, v2, . . . , vn

(
p∧ R̃

))
given that Ṽ is the set {v1, v2, . . . , vn}, and the function unprime substitutes primed variables

with their unprimed versions. In a similar fashion, we define the pre-image operator pre(P,R) ,

{s | (s, s0) ∈ R∧ s0 ∈ P}, where P and R are as defined earlier in the case of the img operator.

If P and R are represented symbolically as the predicates P̃ and R̃ as mentioned in the case of

the img operator, then the symbolic equivalent of the pre operator is given by:

∃ v ′1, v ′2, . . . , v ′n
(
prime(p)∧ R̃

)
given that Ṽ ′ is the set {v ′1, v

′
2, . . . , v

′
n} and the function prime substitutes each variable with its

40



primed version. Thus the img and pre operators yield the set of states (or valuations) reachable

from a given set of states P within one forward or backward transition through R respectively.

We define the operator img∗ as:

img∗(P,R) , P ∪ img(P,R) ∪ img(img(P,R),R) ∪ · · ·

Given that S
Ṽ
is finite, the sequence of unions for img∗ must converge to a fix-point after a

finite number of unions. Thus img∗(P,R) represents the set of all states that are reachable

from a given set of states P by zero or more forward transitions through R. Similarly, we define

the set of all states that can reach a given set of states P by zero or more forward transitions

through R by the function pre∗ as:

pre∗(P,R) , P ∪ pre(P,R) ∪ pre(pre(P,R),R) ∪ · · ·

Again, this sequence must also converge to a fix-point within a finite number of unions.

Algorithm 3.1, GetSymbolicInterps, which has been adapted from the model checking

algorithm presented in the work by Kesten et. al. [KPRS06]6 then describes the synthesis

algorithm in terms of these definitions. Note that although the algorithm is described in terms

of manipulations on sets, all of the operations have efficient implementations in the form of

BDD manipulation routines, if we use BDDs as a symbolic representation for sets. For instance,

we were able to translate these operations in a straightforward manner onto the operations

provided by the BDD library CUDD [SB00], in the prototype that we developed.

3.4.1 Correctness

It has been shown in earlier work [KPRS06] that if the input Ã is not parameterized as it is in our

case, then Ã |= ϕ, and thusA |= ϕ if and only if the value of new13, i.e., the value of the variable

new after the execution of line 13 of Algorithm 3.1, is such that new13∩ ||θ̃∧χ(¬ϕ)|| = ∅. Given

that in our setting, the symbolic transition relation Ã is parameterized by the set of variables

G̃, the set new13 ∩ ||θ̃∧ χ(¬ϕ)|| yields exactly the set of interpretations for G̃ which result in

Ã 6|= ϕ. Therefore, by eliminating these interpretations from the set of all interpretations S
Ṽ

in line 14 of Algorithm 3.1, and by the bi-directional implication in the proof of correctness of

6In fact, in the presentation here, the algorithm is exactly the same as that presented in [KPRS06] up-to and
including line 13.

41



Algorithm 3.1: GetSymbolicInterps: Synthesize all correct fsm-sk completions

Input : A symbolic transition system Ã , 〈ṼA, l̃A, R̃A, F̃As, F̃Aw〉, with parameters G̃
An ltl property ϕ over ṼA.

Output : All interpretations I for parameters in G̃, such that A
I
ϕ.

Data : T¬ϕ , 〈Ṽ¬ϕ, l̃¬ϕ, R̃¬ϕ, F̃¬ϕs, F̃¬ϕw〉, the tester for the ltl formula ¬ϕ.
D , 〈Ṽ , θ̃, R̃, F̃s, F̃w〉, where D = A || T¬ϕ.
new, old : subsets of S

Ṽ

ρ : subset of S
Ṽ
×S

Ṽ

1 construct T¬ϕ and D as defined
2 old← ∅
3 new← img∗(||θ̃||, ||R̃||)
4 ρ← ||R̃|| ∩ new
5 while new 6= old do
6 old← new
7 while new 6= new ∩ pre(new, ρ) do
8 new← new ∩ pre(new, ρ)

9 foreach Fw ∈ F̃w do
10 new← pre∗((new ∩ Fw), (ρ ∩ new))

11 foreach (p,q) ∈ F̃s do
12 new← (new \ ||p||) ∪ pre∗((new ∩ ||q||), (ρ ∩ new))

13 new← pre∗(new, ρ)
14 bad← new ∩ ||θ̃∧ χ(¬ϕ)||
15 return (S

Ṽ
\ bad)

the algorithm presented in the work by Kesten et. al [KPRS06], we immediately obtain the

correctness of Algorithm 3.1.7

3.5 Evaluating the Symbolic Algorithm

To study how the symbolic synthesis algorithm presented in Section 3.4 performs in practice,

we consider the cache coherence protocol called the Valid-Invalid (VI) protocol, which has

been described in Chapter 1. This is one of the simplest cache coherence protocols, and

is thus conveniently representable as a finite-state protocol. Nonetheless, it is qualitatively

representative of the kinds of distributed protocols that we wish to target in this dissertation.

We built a prototype tool in OCaml that implemented Algorithm 3.1, using the CUDD [Som15]

BDD manipulation library as a back-end.

7Strictly speaking, the algorithm returns a set of valuations over Ṽ , which includes variables other than those in G̃,
but nonetheless, because we have Ṽ ⊇ G̃ by construction, every valuation for Ṽ is also a valuation for G̃.

42



3.5.1 Applying the Symbolic Algorithm to Complete the VI Protocol

We constructed a finite version of the VI cache coherence protocol to evaluate the symbolic

synthesis algorithm shown in Algorithm 3.1. In the sequel, we assume that the Directory

fsm-sk is of the formD , 〈LD, lD0, ID,OD,RD,FDs,FDw〉, and each Cache fsm-sk Ci is of

the form Ci , 〈Li, li0, Ii,Oi,Ri,Fis,Fiw〉. We considered three instances of the completion

problem:

• In the first version, the set of tentative transitions that were added to the directory machine is

restricted to transitions of the form 〈 A , RSP, guard, l ′〉, for each l ′ ∈ LD, where guard repre-

sents a fresh propositional variable to be solved for. Similarly, the set of tentative transitions

added to each cache machine was restricted to transitions of the form 〈 B , INV, guard, l ′〉,

for each l ′ ∈ Li, where guard again represents a fresh propositional variable. In essence,

the only synthesis that needs to be performed in this version is to determine the final state

l ′ that each machine needs to transition to. In this case, symbolic algorithm was able to

obtain a correct solution within 30 seconds.

• In the second version, the set of tentative transitions for the directory machine is restricted

to transitions of the form 〈 A ,m, guard, l ′〉, for everym ∈ ID ∪OD, and for every l ′ ∈ LD.

Similarly, the set of tentative transitions for the cache machine is restricted to transitions of

the form 〈 B ,m, guard, l ′〉, for everym ∈ Ii ∪Oi and for every l ′ ∈ Li. This is tantamount

to determining what message to send or receive when at the locations labeled A and B , as

well as the next state to transition to after sending or receiving the message. In this case,

the symbolic algorithm was able to converge on a correct solution in about ten minutes.

• In the third and final version, the set of tentative transitions for the directory machine

includes all transitions of the form 〈l,m, guard, l ′〉, for everym ∈ ID ∪OD, and for every

l, l ′ ∈ LD. Similarly, the set of tentative transitions for the cache machine is restricted to

transitions of the form 〈l,m, guard, l ′〉, for everym ∈ Ii ∪Oi and for every l, l ′ ∈ Li. These

tentative transitions are added only if they do not result in non-determinism in the fsm-sks.

In this version, the completion algorithm does not have any knowledge about the starting

locations of the missing transitions are, what messages to send or receive in the starting

locations, as well as what the final locations of the transitions are. For this version of the

problem, the symbolic algorithm was unable to obtain a correct solution even after six hours

of computation time.

43



To summarize, the three versions of the protocol completion problem for the VI coherence

protocol differ in the amount of programmer intuition conveyed to the algorithm. The observa-

tion here is that the symbolic algorithm performs better when the search space of solutions is

restricted by leveraging the intuitions that a programmer has. We now discuss the reasons for

why the algorithm does not scale in the hardest of cases, as well as elaborate on some of the

insights obtained from this experiment.

BDDs and the Scalability of the Symbolic Algorithm

In our experiments with Algorithm 3.1, we observed that the BDDs often consisted of tens to

hundreds of millions of nodes. The calls to BDD manipulation routines sometimes required tens

of minutes of computation. We experimented with enabling the dynamic reordering of BDDs

in CUDD. This helped keep the size of the BDDs manageable and enabled quick completion

of the BDD manipulation routines. However, the cost of this was that every time the dynamic

reordering was triggered, it often took tens of minutes to complete the reordering, based on

the internal heuristics implemented in the CUDD library. To summarize, enabling dynamic

reordering did not have a positive impact overall execution time of the algorithm. Given that

the BDDs were being used to represent constraints over a set containing about 600 variables

in the hardest versions of the VI completion problem, we could not exhaustively evaluate

all possible static variable orderings. We did however, experiment with a few static variable

orderings, that we believed were reasonable, but were unable to improve the execution times

of the algorithm.

Impact of Symbolically Retaining all Solutions

Figure 3.1 depicts the reachable state space of the protocol in terms of the interpretation that is

chosen (in this case, parameter valuations), at a conceptual level. We have empirically observed

that checking if a correct version of the VI protocol satisfies all the ltl specifications can be

performed rather efficiently,8 and requires only a few seconds of computation time, even with

a static BDD variable ordering. From this observation, we infer that the region G is amenable

to being represented compactly using BDDs. However, Algorithm 3.1, first computes the region

U, and then computes G, by removing all states (and the parameter valuations which led to

their conditional reachability) that can reach an erroneous state in one or more steps. We

8This can be accomplished by simply executing Algorithm 3.1 until (and including) line 13, and checking that
new ∩ ||θ̃∧ χ(¬ϕ)|| is empty.

44



init error

U

G

Figure 3.1: Depiction of the state space of the protocol in terms of all possible completions.
The region marked U, which includes all other regions is the state space of the protocol which
is reachable if the set of parameter valuations is left unconstrained, i.e., this is the region that
is the union of the reachable state space for every possible completion. The region marked
G, which includes the region marked init, consists of the set of states of the protocol that are
reachable if a good completion is chosen. The set U \ G denotes the set of states that are
reachable if a bad completion is chosen. These are states that can reach an error state in zero
or more steps, under a given bad completion.

have empirically observed that the BDDs representing G are compact. We thus conclude that

representing the large parts of the set U that are conditionally reachable, together with the

parameter valuations which ensure their reachability is difficult using BDDs.

To try and reduce the size of the BDDs representing these intermediate results, our imple-

mentation differs slightly from Algorithm 3.1, in the following ways:

• We separate ltl specifications that are safety specifications, i.e., of the form Gp, from true

liveness specifications, which could involve eventualities.

• We aggressively eliminate interpretations that are proven unsafe, as early as possible, during

the execution of the algorithm. Specifically, the computation in line 3 in Algorithm 3.1 is

interleaved with steps to eliminate incorrect interpretations. This is done by eliminating

parameter valuations that cause the currently computed under-approximation of the set of

reachable states to have a non-empty intersection with the set of states where the invariant

is violated.

Unfortunately, this optimization did not have much effect on the execution time of the algorithm,

owing to two reasons:

1. We only eliminate a parameter valuation when it has been proven to reach an unsafe state.

As can be seen from Figure 3.1, there is a large set of states marked U \ G, which will

inevitably lead to an unsafe state, but might need several steps to do so. This causes our

algorithm to retain large parts of the setU\G as a function of the parameter valuations in a

45



symbolic form. And we have already discussed that this space is not compactly representable

using a static BDD ordering. The problems with enabling dynamic reordering have also

been discussed earlier.

2. The aggressive pruning only prunes parameter valuations which violate some safety specifi-

cation. A large part of the specifications for the VI protocol are liveness specifications. We

have empirically observed that even after pruning unsafe parameter valuations, the BDDs

that evolve during the execution of the loop on line 5 of Algorithm 3.1 are often huge.

Based on these observations, we concluded that this symbolic approach, while very elegant,

was unlikely to perform well in practice on larger, more complex protocols. We conclude

the discussion on this symbolic synthesis strategy by summarizing some key insights which

influenced the direction of the research described in the rest of this dissertation.

3.5.2 Insights from Experimenting with the Symbolic Algorithm

• Starting with the set of all possible solutions and paring it down to the set of correct solutions

is difficult, especially if the state space of the protocol is maintained symbolically as a function

of the current over-approximation of the set of correct solutions. More effective algorithms

are possible if we require the algorithms to find one correct solution, rather than all of them,

as we show in subsequent chapters of this dissertation.

• Symmetry in the state space cannot easily be exploited to reduce the size of BDDs. Although

there has been work along this direction [CJEF96, EW03, EW05, WBE08], most of these

techniques are geared towards checking ctl properties, and not ltl properties with fine-

grained fairness assumptions. The problem is that symbolically representing the orbit

relation between states which are equivalent modulo the symmetry assumptions requires

an exponentially sized BDD, which negates any savings obtained by eliminating symmetric

states.

• Explicit state model checking techniques seem more promising than symbolic techniques for

synthesis. Counterexample Guided Inductive Synthesis [SLRBE05, STB+06, SAT+07, Sol09]

can more readily be applied when using explicit state model checking techniques, as we show

in the rest of this dissertation. Further, symmetry in the state space of the protocol can also be

more effectively exploited, leading to exponential space savings [ID96, Dil96, ES97, SGE00].

• If a CEGIS technique is used, then a purely depth-first or breadth-first approach during the

verification (or model-checking) phase is sub-optimal. We have observed this empirically in

46



Description of the
incomplete protocol

1

Build esm-sks
4

Constraints ψ on
unknown functions

2

Generate I such
that I |= ψ∧ϕ

5

Instantiate
Protocol

6

Check
correctness

7

Liveness and
safety monitors

3

Correct
Protocol

Augment ϕ with
constraints from errors

8

Correct?

Incorrect?
Error traces

ϕ augmented with
additional constraints

Figure 3.2: Algorithmic scheme of all the solution strategies we discuss. The gray rectangles
represent inputs, the blue rounded rectangles represent computation, and the red rhombuses
represent decisions. Solid blue arrows represent control and data flow, while the dashed black
arrows represent data flow.

the case of the symbolic algorithm, which uses a symbolic, breadth-first search strategy. In

the later chapters of this dissertation, we explore heuristics for explicit state model checking

algorithms, which lead to quicker convergence of the CEGIS loop to find an interpretation

that satisfies the requirements described in Section 2.3.

We conclude this chapter with a brief discussion of the solution strategies described in the rest

of this dissertation.

3.6 Road-map for the Rest of the Dissertation

In our attempt to find a complete solution to the problem defined in Section 2.3, we solved

several simplified versions of the problem, each progressively less simplified. Each of these

techniques will be described in subsequent chapters, culminating in a complete solution for

the problem defined in Section 2.3 in Chapter 8. Each of these approaches tries to solve a

particular aspect of the problem and is interesting in its own right, in addition to bringing us a

step closer to a complete solution. Figure 3.2 describes the general scheme of the algorithm

used in our solution strategies. Every one of the solution strategies which we shall present

47



in the rest of this manuscript may be viewed as an instantiation of the algorithmic scheme

shown in Figure 3.2. The block labeled 1 represents the description of the incomplete protocol

provided by the user. This can be an esm sketch itself or in some other form, for example,

flows or scenarios [TT08], or message sequence charts [ITU96] or live sequence charts [DH01],

from which the esm sketch is built by the block labeled 4 . The user can also specify a set

of constraints ψ representing domain knowledge, as shown in the block labeled 2 , which is

taken into consideration while generating a suitable interpretation in the block labeled 5 . The

set of constraints ϕ is initially empty. Once a suitable interpretation I has been generated,

the protocol is instantiated with this interpretation by the block labeled 6 , and checked for

correctness against the user specified safety and liveness monitors ( 3 ) by the block labeled 7 .

This check is performed using a model-checker. If the protocol is found to satisfy all the safety

and liveness requirements, then the algorithm terminates with a success. On the other hand, if

the model-checker discovers errors, these errors are used to generate additional constraints

( 8 ) which are then added to ϕ. These additional constraints rule out at least the current

interpretation I from being generated again. A new interpretation I ′ is now generated taking

into account the newly added constraints, and this process is repeated until a correct protocol

is found. The solution strategies which we describe in this manuscript differ primarily in how

the incomplete protocol is described ( 1 ), how errors are analyzed to obtain new constraints

to augment ϕ with ( 8 ), and in how new interpretations are generated ( 5 ).

Our first attempt, which resulted in a system called transit [URD+13], applied the

following restrictions on the problem statement: (1) Only safety monitors were used, (2) We

required the protocol designer to specify the behavior of functions in U using any combination of

input-output examples, and symbolic constraints, and finally, (3) we required the interpretations

synthesized to only be consistent with the constraints specified by the protocol designer, and not

necessarily result in a correct protocol. Upon encountering an erroneous trace, the programmer

could specify the correct behaviors of the relevant functions in U using purely concrete input-

output examples corresponding only to the erroneous trace in question. Essentially, the

approach required the programmer to be in the loop with the synthesizer, providing additional

information, whenever the synthesis step resulted in an incorrect protocol. The approach is an

instantiation of the algorithm described in Figure 3.2, where the block labeled 1 is in itself

an esm-sk, the block labeled 2 represents input-output examples or symbolic constraints,

each of which refers to only one function fu ∈ U. The block labeled 3 is restricted to only

48



contain safety monitors, and finally, the task performed by the block labeled 8 is performed

by the user or programmer by adding the relevant input-output examples to ϕ. This work is

described in Chapter 4.

While we were building the tool transit, we realized that the synthesis problem of

synthesizing a function interpretation given symbolic constraints and input-output examples

could be generalized in a manner that encompasses most other custom-built synthesizers for

various domains. This observation resulted in the formalization of the SyGuS problem, and

a competition of the same name. We built a general-purpose solver for the SyGuS problem,

based on the ideas used in the solver built for transit, which won the SyGuS competition

in 2014 [AFSSL14]. Chapter 5 provides a detailed description of the SyGuS problem, and

Chapter 6 describes an enumerative solution strategy, and also builds more sophisticated and

scalable algorithms based on the simple enumerative solver.

Our second solution strategy allowed full use of safety and liveness monitors, but we

restricted the esms and the esm-sks to not have any state variables, as described earlier in this

Chapter. In essence this meant that all state had to be encoded through the locations of the state

machines, which were essentially finite state machines or finite state machine sketches — fsms

and fsm-sks, as described earlier. Further, we also did not allow messages to have payloads.

However, we relaxed the requirement that an fsm-sk be provided, and instead allowed the

user to specify the known behavior of the protocol using scenarios or flows [TT08], which were

then compiled into fsm-sks. The problem then is essentially to find a set of transitions to add

to the given finite-state sketches, such that the composition satisfies the provided monitors. We

were able to build a system which worked completely automatically, and the system produced

correct protocols, starting from a set of scenarios which described the protocol behavior in

the common cases. Relating this to Figure 3.2, 1 is now a set of scenarios or flows, and block

8 is an algorithm that analyzes counterexample traces and adds appropriate constraints on

the functions in U. Also, U contains functions, each of whose domain the set of locations Li of

the appropriate fsm-sk in the composition A, and whose range is simply a Boolean which

indicates whether the particular transition is allowed or not. We describe this approach in

detail in Chapter 7.

Our third strategy treats symmetry — as defined in Section 2.3 — as a first class citizen

and also allows esms and esm-sks to have typed state variables. We expect the programmer

to provide the description of the protocol directly as esm-sks, i.e., 1 is a set of esm-sks. We

49



also support liveness requirements in the form of Büchi monitors, which are required to be

satisfied under fine-grained fairness assumptions set forth by the programmer. This approach

is fully automatic, and is thus a complete solution to the problem defined in Section 2.3. We

discuss this approach in detail in Chapter 8. Chapter 9 discusses closely related work, both

in the area of distributed protocol synthesis as well as general program synthesis. Finally, we

reflect on the research problems addressed in this dissertation, the limitations of the solution

strategies, avenues for further research and conclude with Chapter 10.

50



4
transit: Specifying Protocols

with Concolic Snippets

This chapter describes a tool called transit, which we have built and evaluated as a solution

to a restricted version of the problem defined in Section 2.3, and uses concolic snippets to

describe the behavior of esm-sks. This chapter is based on the work originally published

in [URD+13].

4.1 Overview of transit
transit allows a programmer to specify the known behavior of the protocol, using concolic

snippets. These are sample transition fragments which describe the guards and updates of a

single transition of an esm-sk using constraints on the valuations of the variables of an esm.

The constraints can be (1) concrete — in which case they describe the behavior of the guard

and updates on exactly one valuation of the esm variables, (2) symbolic — in which case they

describe the behavior of the transition as the post-condition which must hold whenever the

specified precondition holds, or (3) they can be any combination of the concrete and symbolic

constraints.

The motivation for the use of concolic snippets is that during the initial design and devel-

opment phase, the programmer can use symbolic values to describe the part of the behavior

of the protocol that well understood. Once an initial — and possibly incomplete — version

of the protocol has been specified using symbolic snippets, it is then checked for correctness.

The programmer can then codify the fixes to any counterexamples obtained during this check

using concrete input-output examples that correspond to a local fix, which eliminates at least

51



8

Extract constraints ψ
from concolic snippets

Concolic
Snippets

1

Build esm-sks
4

Constraints ψ on
unknown functions

2

Generate I such
that I |= ψ

5

Instantiate
Protocol

6

Check
correctness
(Murϕ)

7

Correct
Protocol

Invariants
3

Correct?

Incorrect?
Error Trace

9

Figure 4.1: Overview of developing a protocol with transit. The algorithm is an instantiation
of the algorithm shown in Figure 3.2, with the programmer analyzing error traces. The arrow
labeled 9 denotes the concolic snippets that the programmer provides to eliminate at least
the current error trace in question. These concolic snippets are then used to augment the
constraints ψ on the unknown functions. This process is repeated until a correct protocol is
obtained.

the one counterexample. transit integrates the new (concrete) constraints with the rest

of the constraints to provide a new interpretation I which satisfies all the constraints. The

protocol is instantiated with the new interpretation, and the process is repeated until a correct

protocol is found. The programmer is thus freed from reasoning about the global properties of

the protocol when handling corner-case behavior, which were not handled in the initial version

of the protocol.

Figure 4.1 provides a high-level view of the working of the transit system. It is an

instantiation of the algorithmic scheme shown in Figure 3.2: the inputs are in the form of

concolic snippets, which we will define shortly. The relevant constraints ψ on the unknown

functions — functions fu ∈ U—are extracted from these snippets by transit; the box labeled

2 is thus not directly provided by the programmer. The task of analyzing counterexamples and

52



inferring additional constraints on the unknown functions — represented by the block labeled

8 in Figure 3.2 — is not automatic, but it instead performed by the programmer in transit.

Also, transit only supports safety properties: this is not a methodological limitation, but

rather due to the limitations of the model checker that we use, Murϕ, which does not support

the checking of liveness properties.

The synthesis algorithm presented in this chapter, assumes a specific form for the constraints

ψ. We require that ψ be a conjunction of constraints ψ , c1 ∧ c2 ∧ · · · ∧ cn, where each

conjunct ci can be an arbitrary Boolean valued expression, but has the following properties:

• The expression, ci refers to exactly one unknown function fu ∈ U.

• The expression ci is assumed to refer only to the set of variables V ∪ {o}, where V is the set

of all state variables of the esm-sk which uses fu in its description.

• All applications of fu in ci are of the form fu(V), i.e., every occurrence of fu in ci has fu

applied to the same set of arguments, and these arguments comprise all the state variables

of the esm-sk which uses fu in its description, in the same order.

These restrictions essentially ensure that the constraint ψ is separable, a notion which will

be defined in Chapter 6. For the purpose of exposition in this chapter, we note that these

restrictions essentially have the following consequences:

• For each fu ∈ U, we can find the subset of conjuncts ψfu in ψ that refer to fu, and these

conjuncts now form the all the constraints that an interpretation for fu needs to satisfy. We

can therefore synthesize interpretations for each fu ∈ U independently.

• Within each ψfu corresponding to the constraints on fu ∈ U, we know that all occurrences

of fu have the form fu(V), where V is the set of all state variables of the esm-sk that refers

to fu. We can thus replace each of these occurrences with a single distinguished variable o,

which has the same type as the range of fu.

The syntax that we use for concolic snippets allow transit to easily translate the concolic

snippets into a constraint ψ that has the required form.

The rest of this chapter is organized as follows: Section 4.2 explains what a concolic

snippet snippet is and describes, by means of examples, how they are used in programming

with transit. Section 4.3 describes an algorithm for synthesizing symbolic expressions

such that they are consistent with the concolic snippets provided by the programmer. Finally,

Section 4.4 presents and discusses the results of experimentally evaluating of transit to

specify a few cache coherence protocols as case studies, our experience with transit, as well

53



Transition(CurrentState, InputEvent)
[optional guard] => (NextState, OutMsg)

Pre1 ==>
Post11;
Post12;
· · ·

Pre2 ==>
· · ·
...

Figure 4.2: A concolic snippet. CurrentState and NextState are the start and end control
states. The snippet specifies zero or more outbound messages. It also specifies a guard-action
block for each guard containing a set of conditional updates. The expression Prei specifies
the condition (on process variables and the fields of the received message) under which the
Boolean constraints Postij hold. Each Postij constrains the updated value of exactly one process
variable or output message field in terms of the old values of the process variables and the
fields of the received message.

as the limitations and shortcomings of this methodology.

4.2 Concolic Snippets and Programming with transit
Figure 4.2 shows the ingredients of a concolic snippet expressed in the transit lan-

guage. We compare the elements in Figure 4.2 with the notation for a transition t ,

〈l,m, guard, updates, l ′〉 which we set up in Section 2.2. For clarity, a “Transition” — note

the mono-spaced font — refers to the identically named construct in the transit language,

whereas a “transition” — note the serif-ed font — refers to the notion of a transition formalized

in Section 2.2. CurrentState represents the initial location for the transition, l in our notation.

A Transition in transit groups together all transitions which begin from a given initial

location CurrentLocation ∈ L, i.e., a Transition in the transit language represents all

transitions of the form t , 〈CurrentState,m, guard, updates, l ′〉, which begin at CurrentState.

Within each Transition, we have multiple guard blocks, one for each transition which begins

at location CurrentState. The InputEvent describes the input messagem (or ε) which triggers

the transition. Within each guard block, the guard is optional. If left unspecified, it will be

synthesized by transit. Each guard block specifies a NextState, which is l ′ in our notation,

as well as an optional output message OutMsg. transit allows the programmer to fuse a

transition involving the receipt of a message with a transition involving transmitting an output

message, i.e., an input or internal transition, followed immediately by an output transition.

54



C1 C2 Dir
EXCLUSIVE
Owner = C1
Sharers = ∅

READ
Sender = C2 BUSY_SHARED

Owner = C2
Sharers = {C1}

Re
pM
sg

IntMs
g

Figure 4.3: An error trace generated by themodel checker in response to an incorrect completion
for the SGI-Origin protocol synthesized by transit. Here, “C1” and “C2” represent two cache
esms and “Dir” represents the directory esm. Time progresses downward along the dotted
arrows (lanes) and the state of each esm after each transition is annotated along the lanes.
Message exchanges and their contents are described using annotated arrows across lanes.

Within each guard block, transit allows multiple Pre-Post blocks. The semantics of each such

block of the form Prei ⇒ Posti1; Posti2; . . . Postim;, where Prei is a Boolean valued expression

on the state variables and incoming message fields, V ∪ {mp}, and Postij constrains the value

of exactly one state variable or a field of the output messagemp, are that if Prei holds at the

beginning of the transition, then Postij, j ∈ [1,m] must hold after the transition has executed.

4.2.1 Using Snippets in transit
To illustrate the use of snippets in transit, we use an anecdote from our case study of

implementing the SGI-Origin cache coherence protocol [LL97] from published informal textual

rules. A directory-based cache coherence protocol, such as the SGI-Origin protocol, ensures

that the copies of data maintained in the private caches of a multi-processor system are

kept consistent. The protocol has a distinguished “Directory” process, which maintains the

global view of the processors in the system which currently have a copy of the data in the

cache. The “Cache” processes coordinate with the Directory process via exchange of messages

whenever they need to perform read or write operations on a block of data. The cache and

the directory processes are typically modeled as esms, and we refer to them as processes or

esms interchangeably. In the SGI-Origin protocol, the directory esm has the variable Sharers,

whose type is a finite set of cache process (or esm) identifiers, and a variable Owner, whose

type is a cache process identifier. The Sharers variable maintains the set of caches which

55



have a read-only copy of the data, whereas the value of the Owner variable, if defined, is the

identity of the sole cache esm in the system which has a read-write copy of the data. The

safety property that every cache coherence protocol needs to satisfy is the coherence property,

which states that the value read by an cache esm is the same as the value written by the most

recent write operation by any cache esm in the system.

One of the textual rules from the paper [LL97], describing the behavior of the directory

esm in the SGI-Origin protocol, on receiving a read request from a cache esm reads:

If directory state is Exclusive with another owner, transitions to Busy-shared with

requester as owner and send out an intervention shared request to the previous owner

and a speculative reply to the requester. Go to 5b.

Note that this description does not specify how the Sharers variable needs to be updated. The

programmer indicates that the new value of the Sharers variable needs to contain at least the

sender of the message received, in addition to the old contents of the Sharers variable. This is

codified in transit using the following concolic snippet:

Transition(EXCLUSIVE, ReqNet Msg) {

[] => (BUSY_SHARED, RepNet RepMsg, IntNet IntMsg) {

(Msg.Type = READ & Msg.Sender != Owner) ==> {

SubsetOf(SetUnion(Sharers, {Msg.Sender}), Sharers’);

. . .

}}}

Note that this snippet is active only when the current location of the directory esm is EXCLUSIVE

and a request message is received. It also specifies that the location to transition to is

BUSY_SHARED, and that the a reply message as well as an intervention message is to be trans-

mitted, as required by the textual rule. The ReqNet, RepNet and IntNet declarations indicate

the specific channels these messages are sent out over. This is a technicality required by the

transit language is not particularly relevant to the ideas we describe, so we ignore it in

the rest of the manuscript. To be consistent with this snippet, transit needs to generate

code for the update of the state variable Sharers such that the new value of the variable

(denoted by the primed variable Sharers’) is the super-set of union of the old value of the

variable and the sender of the message. Based on the snippet provided by the user, suppose

that transit generated the following code for the update of the Sharers variable for the

transition in question:

56



Sharers := Sharers ∪ {Msg.Sender}

An attempt to verify the protocol instantiated with this update, results in a violation of the

coherence invariant. A visual representation of a simplified version of the error trace is shown

in Figure 4.3. Observe that the transition shown on the directory esm in Figure 4.3 is a

concrete instance of the concolic snippet that we have described, with the cache esm C2 being

Msg.Sender and the Owner variable of the directory esm Dir initially set to C1. Upon inspecting

the error trace, the programmer recognized that in this particular case, the new value of

the Sharers variable needed to include the previous value of the Owner variable as well. The

programmer codifies this using the following concrete snippet:

Transition(EXCLUSIVE, ReqNet Msg) {

[] => (BUSY_SHARED, RepNet RepMsg, IntNet IntMsg) {

(Msg.Type = READ & Msg.Sender = C2 & Owner = C1) ==> {

Sharers’ = {C1, C2};

. . .

}}}

Observe that this snippet is only applicable in the specific case when the directory receives

a READ request from cache C2, and the owner is cache C1. The programmer has not applied

any global reasoning to come up with this snippet. With this additional snippet, transit

generated a new implementation with the correct update for the Sharers variable as:

Sharers := Sharers ∪ {Msg.Sender, Owner}

To sum up, transit allows a snippet to be (1) completely symbolic, in which case the

constraints on each lvalue are simple equalities, and transit does not attempt to synthesize

code for such snippets, instead treating them as the implementation itself, or (2) concolic, in

which case, each of the constraints Postij has no restriction on its form, but only constrains one

lvalue, or (3) concrete, in which case, it still constrains one lvalue, but concrete values are used

in both the pre- and the post-conditions in the constraints.

4.3 Expression Inference

To construct a protocol from the concolic snippets provided by the programmer, transit

needs to synthesize expressions which are consistent with each of the snippets provided by the

programmer. Let us, for the moment, assume that constraints implied by the programmer in

the concolic snippets can be translated precisely into a constraint ψ, of the form described in

57



Section 4.1. We will return to the question of how this translation is accomplished towards

the end of this section. For the purpose of the synthesis algorithm, we treat the constraints

obtained from both concrete and concolic snippets in the same way, i.e., as symbolic constraints

over the expressions to be synthesized. For each unknown function fu ∈ U, we can separate the

constraints on fu into a set of conjuncts ψfu , where each conjunct refers to the set of variables

V , of the esm-sk that refers to fu, and a distinguished output variable o /∈ V . The variable o,

which corresponds to the lvalue being updated. Consider the set of constraints ψfu for one

fu ∈ U. Let us call the conjunction of the constraints in ψfu as C. The expression inference

problem thus corresponds to the following computational problem: Given a quantifier free

formula C over a set of typed (esm) variables V ∪ {o}, find a symbolic expression e, which

refers only to variables in V , such that C[o 7→ e] is valid, i.e., ¬C[o 7→ e] is not satisfiable. Here

the notation C[o 7→ e] denotes that every application of the function o in C is syntactically

replaced by the expression e. Note that we can synthesize expressions for each unknown

guard or update function independently because each post-condition in a snippet is required

to constrain the value of exactly one lvalue, which corresponds to the distinguished output

variable o, described earlier.

We assume a fixed vocabulary of function symbols Fv ⊆ F (with fixed, known interpreta-

tions) using which the expression e is to be constructed, i.e., e is a well-typed composition of

function symbols in Fv, applied to the variables in V . The instantiation of the set of types T in

the context of transit is the finite set of types which includes the types of all the variables

in the system. This includes (1) The type Int representing integers, (2) The type Bool, which

represents the Boolean type, (3) The type PID, which represents the set process identifier,

one for each state machine in a protocol, and (4) The type Set, values of which represent

sets of process identifiers, i.e., sets of values of type PID. The type PID is implemented as a

bit-vector. Table 4.1 shows the signatures and semantics of the function symbols used in the

instantiation of Fv in the implementation of transit. Thus the search space for an expression

e is simply the set of all well-typed function compositions using functions symbols in Fv applied

to variables in V. Our algorithm for inferring expressions enumerates expressions from this

space, in increasing order of the syntactic size of the expressions.

Consider a valuation σ of the set of variables V. Recall that a candidate expression e to

be substituted for the output variable o, is built from function symbols whose interpretations

are fixed and known and from variables in V. So, given a valuation σ, we can evaluate the

58



Function Description
add (Int, Int)→ Int Integer Addition
sub (Int, Int)→ Int Integer Subtraction
inc (Int)→ Int Add one to an Integer
dec (Int)→ Int Subtract one from an Integer
setadd (Set, PID)→ Set Add an entry into a Set
setsize (Set)→ Int Cardinality of a Set
setunion (Set, Set)→ Set Set Union
setinter (Set, Set)→ Set Set Intersection
setminus (Set, Set)→ Set Set Difference
setof (PID)→ Set Create a singleton Set
or (Bool,Bool)→ Bool Boolean Disjunction
and (Bool,Bool)→ Bool Boolean Conjunction
not (Bool)→ Bool Boolean Negation
setcontains (Set, PID)→ Bool Membership test on a Set
iszero (Int)→ Bool Test if an integer is Zero
∀t ∈ T equals (t, t)→ Bool Equality Test
ge (Int, Int)→ Bool Greater than or equal to
gt (Int, Int)→ Bool Greater than
∀t ∈ T, ite (Bool, t, t)→ t Conditional Expression
numcaches ()→ Int # of Caches (constant)

Table 4.1: Expression Vocabulary used in Coherence Protocols

expression e over σ. Given a set of variables V , we denote by SV the set of all valuations of V ,

as in Chapter 2. We denote the value of an expression e evaluated with the variable valuation

σ as e|σ. Given an ordered list of valuations P , 〈σ1,σ2, . . . ,σn〉, we define the signature

of an expression e with respect to P as signature(e,P) , 〈e|σ1 , e|σ2 , . . . , e|σn〉. Now, if two

expressions e and e ′ have the same signature on a list of valuations P, then (1) either they have

the same signature on all possible valuations σ ∈ SV , in which case, e and e ′ are equivalent,

or, (2) there must be some valuation σ ∈ SV which serves to distinguish e and e ′. We use this

observation to prune the search space of expressions.

Algorithms 4.1 and 4.2 describe the enumerative algorithm to infer an expression e con-

sistent with a Boolean valued constraint C. Algorithm 4.1, SynthForPoints, synthesizes an

expression e such that C[o 7→ e] satisfies the constraints at least for a given set of valuations P.

It accomplishes this by a dynamic programming strategy. It begins by enumerating expressions

of size zero — variables v ∈ V and functions of arity zero, i.e., constants in our setting. For

each expression e that the algorithm considers, it computes signature(e) and determines if an

59



Algorithm 4.1: SynthForPoints: Synthesize an expression consistent with a set of
inputs
Input :An ordered list of valuations P.

An expression vocabulary Fv over a set of types T.
A set of typed variables V ∪ {o}.
A constraint C over V ∪ o.

Output :An expression e such that for every valuation σ ∈ P, C[o 7→ e]
∣∣
σ
= true.

Data :expst,j, t ∈ T, j ∈ N+, which are sets of expressions of type t and size j, initially empty.
A set sigs which contains the signatures of expressions over P, initially empty.

1 baseexps← {v ∈ V} ∪ {c ∈ Fv : arity(c) = 0}
2 foreach e ∈ baseexps do
3 s← signature(e,P)
4 if s ∈ sigs then
5 continue

6 if ∀σ ∈ P.
(
C[o 7→ e]

∣∣
σ

)
then

7 return e

8 t← typeof(e)
9 sigs← sigs ∪ {s}

10 expst,1 ← expst,1 ∪ {e}

11 i← 2
12 while true do
13 foreach f ∈ Fv do
14 m← arity(f)
15 〈t1, t2, . . . , tm〉 ← dom(f)
16 foreach m-partition 〈r1, r2, . . . , rm〉 of i− 1 do
17 foreach (e1, e2, . . . , em) ∈ Πmj=1expstj,j do
18 e← f(e1, e2, . . . , em)
19 s← signature(e,P)
20 if s ∈ sigs then
21 continue

22 if ∀σ ∈ P.
(
C[o 7→ e]

∣∣
σ

)
then

23 return e

24 t← range(f)
25 sigs← sigs ∪ {s}
26 expst,i ← expst,i ∪ {e}

expression e ′ with the same signature has already been considered (lines 3, 4, 19, 20). If so,

then it discards e from further consideration. Otherwise, it checks to see if C[o 7→ e] evaluates

to true at all valuations σ ∈ P, in which case, the algorithm returns the expression e. If neither

of these two cases hold, then the algorithm caches the expression in the appropriate set for

subsequent use as a sub-expression in larger expressions (line 10, 26). Note that the notation

typeof(e) is used to denote the type of the expression e, dom(f) is used to denote the ordered

60



Algorithm 4.2: SynthForAll: Synthesize an expression that is consistent for all inputs
Input :An expression vocabulary Fv over a set of types T.

A set of typed variables V ∪ {o}.
A constraint C over V ∪ {o}.

Output :An expression e such that for every valuation σ ∈ SV , C[o 7→ e]
∣∣
σ
= true.

Data :An ordered list P of valuations σ ∈ SV , initially empty.
1 while true do
2 e← SynthForPoints(Fv,V ,C,P)
3 if ¬C[o 7→ e] is unsatisfiable then
4 return e;

5 else
6 σ← valuation such that ¬C[o 7→ e]

∣∣
σ
is true

7 append σ to P

list of types which are the domain of the function f and range(f) is used to denote the range

of the function f in Algorithm 4.1.

Algorithm 4.2, SynthForAll, synthesizes an expression e such that C[o 7→ e] is valid. It

accomplishes this by repeatedly invoking Algorithm 4.1, SynthForPoints, with a monotoni-

cally increasing set of points in the list P. The check in line 3 of the algorithm is performed

using an SMT solver. We use the SMT solver Z3 [dMB08] in our implementation. Each time

that the SMT solver returns a witness for the invalidity of C[o 7→ e], we use that witness to

augment P, and re-invokes SynthForPoints with the augmented P.

Attempting to first find an expression that is correct for a set of valuations P which were

witnesses to failed verification attempts in the past, enables the pruning by means of signatures

in Algorithm 4.1. The two techniques together yields two advantages over a naïve enumeration

of expressions: (1) The number of expressions enumerated is much smaller. Note that when an

expression is discarded, it is also never considered to build larger expressions from as well, and

thus results in a decrease in the number of expressions enumerated at the next level. We have

empirically observed that this ripple effect can significantly reduce the number of expressions

enumerated, and thus allow our techniques to synthesize larger expressions than possible if

these optimizations were not applied. (2) The number of expensive calls to an SMT solver

are reduced, when compared to a naïve algorithm which invokes the SMT solver on every

expression that it considers.

Example 1. To illustrate the working of Algorithm 4.2, consider the problem of finding an

expression for the output variable o, which needs to be updated with the value max(a,b), where

61



Expression returned Counterexample Valuation σ
by SynthForPoints which violates C added to P

— — 〈a : 0,b : −1〉
a 〈a : 0,b : 1,o : 0〉 〈a : 0,b : 1〉
ite(iszero(dec(b)),b,a) 〈a : 0,b : 2,o : 0〉 〈a : 0,b : 2〉
ite(gt(b,a),b,a) — —

Table 4.2: Illustration of the working of the expression inference algorithm

a,b ∈ V , and with the expression vocabulary in Table 4.1. We can specify this with the following

constraint C over the variables a, b and o:

(o > a)∧ (o > b)∧ ((o = a)∨ (o = b))

Table 4.2 shows the expressions that were returned by the calls that SynthForAll made to Synth-

ForPoints, as well as the valuation returned by the SMT solver as a result of attempting to verify

that this expression is correct, and the valuation σ that was a added to the set P maintained by

Algorithm 4.2. The first row of the table seeds the set of valuations P, by making an query to the

SMT solver. The subsequent rows indicate the expression that was attempted to be verified, and the

valuation at which the expression is incorrect. We observe that the expression corresponding to

max(a,b) was discovered after making only four calls to the SMT solver, although Algorithm 4.1,

SynthForPoints enumerated approximately five hundred expressions in this process.

4.3.1 Correctness of SynthForPoints

We now provide a proof that the optimizations in Algorithm 4.1 are sound, i.e., they do not

result in expressions being spuriously discarded.

Theorem 1. Given a set of valuations P and a constraint C, the algorithm SynthForPoints

always terminates with a smallest expression e which is a well-typed composition of functions in

F, and satisfies C[o 7→ e] for every valuation σ ∈ P, if such an expression e exists. If no such e

exists, then SynthForPoints may run forever.

Proof. To prove this claim, we need to establish: (1) SynthForPoints always returns an

expression that is a well-typed composition of function symbols in F, (2) the expression

returned by SynthForPoints satisfies C[fu 7→ e] for every valuation σ ∈ P, and (3) that

62



SynthForPoints always returns an expression e that satisfies the first two criteria, whenever

such an expression exists.

It is easy to see that algorithm SynthForPoints only ever enumerates expressions that

are well-typed compositions of function symbols in U, so the proof for (1) is immediate. By

construction, the algorithm always returns an expression e such that C[fu 7→ e] = true for

every valuation σ ∈ P, so the proof of (2) is also immediate.

To prove that SynthForPoints always returns an expression e if one exists, we leverage

the correctness of a naïve version of Algorithm 4.1. The naïve version performs no pruning

based on signatures, i.e., lines 4, 5, 9, 20, 21 and 25 are deleted from Algorithm 4.1. The

rest of the algorithm remains the same. This naïve algorithm enumerates all expressions, and

thus it definitely satisfies the theorem. Let ≺ be the total order in which the naïve algorithm

enumerates expressions. We have as a consequence that if e1 ≺ e2 for some expressions e1

and e2, then the size of e1 is less than or equal to the size of e2. Further, it is also clear that

Algorithm 4.1 enumerates expressions in the same order, but it might skip some expressions.

Let es be the first expression in this sequence such that C[o 7→ es] is true at all points σ ∈ P,

i.e., for every other e in the sequence such that C[o 7→ e] is true at all points σ ∈ P, we have

that es ≺ e. We now need to prove that Algorithm 4.1 never discards es.

We proceed by induction on the shape of es. If es is a variable or a constant, i.e., es is an

expression of size one, then the proof is immediate: the algorithm enumerates all of these,

and if some expression e ′, such that e ′ ≺ es has the same signature as es over P, then e ′ is a

solution as well, which contradicts the assumption that es is the first solution.

Suppose es consists of a function symbol at the top level, and Algorithm 4.1 does not return

es. There are two possibilities why this might have happened:

• Algorithm 4.1 actually enumerated es, but it was found to have the same signature as some

other expression e which was enumerated earlier. In this case, C[o 7→ e] is true at all points

σ ∈ P as well, contradicting the assumption that es is the first solution.

• Algorithm 4.1 never enumerated es. This can happen if some sub-expression esub of es had

the same signature as e ′sub on P, and e
′
sub ≺ esub. In this case, the expression es[esub 7→ e ′sub],

which is es with its sub-expression esub replaced by e ′sub would have been enumerated before

es. Because esub and e ′sub have the same signatures, so do es and es[esub 7→ e ′sub], and thus

C[o 7→ es[esub 7→ e ′sub]] is true at all points σ ∈ P as well, contradicting the assumption that

es is the first solution.

63



On the other hand if no such e exists, then Algorithm 4.1, being enumerative, can never

prove that no such e exists, if the space of expressions is infinite. It may thus run forever on

infinite expression spaces, if no solution exists in the space.

The rest of this section describes how the concolic snippets specified by the programmer

are translated into constraints in the form described towards the beginning of this section.

As mentioned earlier, we synthesize for each guard and update independently. So we only

describe how the constraints C — which are of the form required by Algorithm 4.2 — for each

lvalue to be updated and for each guard to be synthesized are generated. The same process is

repeated for every update and for every guard in the protocol.

4.3.2 Constraints for Update Expressions

transit assumes a parallel assignment model. This in addition to the requirement that each

post-condition in each concolic snippet constrain exactly one lvalue makes it straight-forward to

extract constraints for update expressions independently: For each lvalue, we group together

the pre- and post-conditions from a single guard block within a Transition. All of these pre-

and post-conditions must constrain the updated value of the same lvalue. We replace this

lvalue in the post-conditions by a fresh variable o of the appropriate type. Thus, for each pre-

and post-condition pair, we simply make an implication of the form Pre⇒ Post and let C be

the conjunction of these implications.

4.3.3 Constraints for Guard Expressions

A guard can be viewed as a Boolean-valued expression. The key difference between computing

guards and computing update expressions is that for a given control state and input event,

guards cannot be computed independently of each other. To ensure that the behavior of the

esm-sk implementations generated by transit are deterministic, the computed guards for

each control location and input event pair are required to be pairwise mutually exclusive. To

compute guards on transitions from a given control location, transit groups the concolic

snippets with the same starting state, input event and next state into one guard-action as

shown in Figure 4.2. Therefore, given a starting state and input event, each possible next state

has a corresponding guard-action associated with it.

Given a set of guard-actions B1, . . . ,Bn, the jth guard-action block is a set of concolic

snippets with preconditions Prej1, . . ., Prejkj . The algorithm for computing guards sequentially

64



computes the guards for each of the blocks, starting with B1. Thus, before synthesizing the jth

guard, it has the expressions already synthesized for the guards g1, . . . ,gj−1 corresponding to

the guard-action blocks B1, . . . ,Bj−1 available to it. To compute a guard gj for the guard-action

block Bj, we observe that for the completion to be deterministic, gj must evaluate to false

whenever the guard gi evaluates to true, for any i < j. This property is expressed with the

following constraint:

C1 ≡
∧
i<j

(
gi ⇒ ¬gj

)
Next, gj must evaluate to true whenever any of the preconditions Prejl, l ∈ [1,kj] evaluate

to true. This is necessary to ensure that the guard is not too narrow. This property can be

expressed with the following constraint:

C2 ≡

 kj∨
l=1

Prejl

⇒ gj

Also, corresponding to each block Bi for which a guard has not yet been synthesized (i.e.,

i > j), gj must evaluate to false whenever any of preconditions in Bi evaluate to true. This is

necessary to ensure that the guard is not too overly broad. This property is expressed with the

following constraint:

C3 ≡
∧
i>j

((
ki∨
l=1

Preil

)
⇒ ¬gj

)

Finally the constraint C required for inferring gj is simply the conjunction of the above three

constraints, i.e., C , C1 ∧ C2 ∧ C3.

4.3.4 Evaluation of the Expression Inference Algorithms

To evaluate the performance of the expression inference algorithm, we focus on the size of the

expressions which the algorithm is able to compute successfully as a key metric. To benchmark

the impact of pruning based on signatures in the algorithm SynthForPoints, a large number of

random expressions of varying sizes were generated. For each expression, a set of ten concrete

valuations for the input variables was generated. For each randomly generated expression,

the Algorithm SynthForPoints was used to compute an expression that is consistent with

the corresponding set of valuations for the input variables. Figure 4.4 shows that the “Pruned”

variant — which prunes the search space using signatures, as described earlier — often explores

65



0 2 4 6 8 10 12 14

101

102

103

104

105

106

107

Expression Size

N
um

be
r
of

Ex
pr
es
si
on

s

Pruned
Exhaustive

Figure 4.4: Average number of expressions explored for various expression sizes by the Pruned
and Exhaustive variants of Algorithm SynthForPoints. We omit data for the Exhaustive
variant for sizes greater than 10 where it exceeds the memory limit of 3.5 GB.

two to three orders of magnitude fewer expressions than the “Exhaustive” variant — which

does not perform any pruning — for expression sizes larger than ten (note the logarithmic

scale on the Y-axis in Figure 4.4).

To evaluate the overall expression inference algorithm, i.e., the performance of Synth-

ForAll in conjunction with SynthForPoints on symbolic constraints, we used the benchmarks

shown in Table 4.3. The algorithm computes expressions of up to size 15 within a reasonable

amount of time as shown in Table 4.3. The algorithm exceeds our 30 minute time-out on only

one benchmark, whose solution has an expression size greater than 20. The right-most column

in Table 4.3 shows that the algorithm reaches the desired solution within a few iterations of

the CEGIS outer loop.

4.4 Experimental Evaluation of transit
We first validated the feasibility of using our approach by transcribing two simple, fully specified

protocols from the GEMS simulation toolkit [MSB+05] into concolic transit snippets. These

protocols are the Valid-Invalid (VI) protocol and a blocking version of the MSI protocol, which

allows for limited concurrency. With four cache processes and one directory, the entire synthesis

process took less than a second for each protocol. The key results are summarized in Table 4.4.

We then evaluated the approach on three larger case studies: A non-blocking version of the

MSI protocol, the MESI protocol and the industrial SGI-Origin protocol.

66



# Description Expected Expression
Expr.

Constraint C
Time

# Iters
Size (s)

1 Max. of a, b ite(gt(a,b),a,b) 6

(a)
< 1 1((a > b)⇒ (o = a)) ∧

((b > a)⇒ (o = b))

(b)
< 1 2o > a∧ o > b ∧

(o = a∨ o = b)

2 Max. of a, b, c Similar to 1 15
Similar to 1(a) 536 7
Similar to 1(b) 762 16

3 Sym. Diff. of s1, s2
setunion(setminus(s1, s2), 7

o ⊆ (s1 ∪ s2) ∧
< 1 2

setminus(s2, s1))
o ∩ (s1 ∩ s2) = {} ∧

o ∪ (s1 ∪ s2) = s1 ∪ s2
4 Sym. Diff. of 3 sets Similar to 3 11 Similar to 3 < 1 6

5 Sym. Diff. of 4 sets Similar to 3 15 Similar to 3 132 14

6 Conditional Update ite(equals(e, c1),a,b) 6
((e = c1)⇒ (o = a)) ∧

< 1 4
((e 6= c1)⇒ (o = b))

7 Largest of 2 sets 8

(a)
< 1 1

ite(gt(setsize(s1),
(|s1| > |s2|⇒ o = s1) ∧

setsize(s2)),
(|s2| > |s2|⇒ o = s2)

s1, s2)
(b)

|o| > |s1| ∧ |o| > |s2| ∧ < 1 2
(o = s1 ∨ o = s2)

8 Largest of 3 sets Similar to 7 > 20 Similar to 7(b) TO –

Table 4.3: Benchmarks and evaluation of the expression inference algorithms

Synthesis
Protocol # Snippets Updates Guards State-

Num. Exps Time Num. Exps Time Space
synth. tried (secs) synth. tried (secs)

VI 19 49 449 < 1 17 525 < 1 140K
MSI 77 157 3330 < 1 45 3710 < 1 854K

Table 4.4: Performance of snippet-based design. The column labeled “Num. synth” represents
the number of guard and update expressions that needed to be synthesized. The “Exps tried”
column shows the number of expressions enumerated by the expression inference algorithm,
and the column labeled “State-Space” shows the number of states in the final protocol.

4.4.1 Case Study A: Non-blocking MSI

We specified the non-blocking MSI protocol described in the synthesis lectures [SHW11] using

concolic snippets in transit. Note that the MSI protocol referred to in Table 4.4 is a blocking

version of the MSI protocol. The non-blocking version of the MSI protocol considered in

this case study allows a greater number of concurrent requests to be in flight, requiring the

67



programmer to consider a larger number of corner cases due to the increased concurrency

resulting from the larger number of in-flight requests.

The scenarios described in the text resulted in a sparse initial set of snippets, as most of

the tricky corner cases were either indirectly specified in the textual description or were left

unspecified. Hence, the programmer added 67 more snippets over 13 debugging iterations

before converging to a correct protocol. In each such iteration, the programmer either added

symbolic snippets, when the behavior of the protocol in some corner case was completely

unspecified, or concrete snippets, when a specification existed but was incomplete. Table 4.5

summarizes the effort and complexity in this experiment.

4.4.2 Case Study B: From MSI to MESI

The goal of our second case study was to augment the blocking MSI protocol with an “Exclusive”

or the E state to arrive at the MESI protocol. The E state is an optimization that grants

read-write permissions to the first reader of an unshared address (i.e., not present in any

cache) — as opposed to just read permission in MSI — thereby eliminating coherence traffic

on a subsequent write to the same address. The synthesis lectures [SHW11] describe this

protocol in terms of new scenarios and modifications to scenarios in the MSI protocol. Our

approach was to add the corresponding snippets to the existing set of snippets used to specify

the blocking version of the MSI protocol. Because the examples describe a MESI protocol with

a non-blocking directory, we modified our baseline MSI protocol correspondingly.

The extended protocol contained five new states (four for the cache, one for the directory),

and seven new message types. In the first iteration, we added 19 snippets to specify transitions

involving the E state and the non-blocking behavior of the directory. These snippets described

the behavior of the protocol in under-specified corner cases and scenarios involving transient

states and were added in response to the errors reported by the model checker. The programmer

was able to obtain a fully verified protocol by adding twelve additional snippets over eight

iterations. Additional metrics gathered during this case study are presented in Table 4.5.

4.4.3 Case Study C: The SGI-Origin Protocol

For our final case study, we chose the coherence protocol used in the SGI-Origin 2000

servers [LL97], which is highly cited in the cache coherence literature. The Origin proto-

col is a directory-based, MESI protocol, and it supports multiple concurrent requests to the

68



Case Study A Case Study B
Snippets in the first/last version 19/86 96/108
Writing first set of snippets 2 hrs 6 hrs
Total manual effort 6 hrs 13 hrs
Number of iterations 13 8
Number of traces inspected 5 6
Number of updates/guards inferred 175/80 260/74
States in verified protocol 1.48M 1.5M

Table 4.5: Effectiveness Metrics for Snippet-based Protocol Design

same address. Processes communicate through messages that may be arbitrarily re-ordered in

the network. The consequent race conditions made it an interesting candidate for this case

study.

Laudon and Lenoski [LL97] describe the common case protocol behavior using request

flows. In this experiment, ignoring the “poisoned” directory state (used for page-migration),

we transcribed each of the read, read exclusive, upgrade, and write-back flows using symbolic

snippets in transit. Except for the obvious cases, which corresponded to the well-understood

parts of the protocol, we left most of the guards empty and specified all conditional attributes

on message fields and process variables with pre-conditions.

The protocol skeleton comprised of the cache process and directory processes, four request

types, twelve response types, the request and response networks, and an intervention network

used to buffer intervention requests. We initially specified 56 transitions in the cache machine

and 18 transitions in the directory machine. We also specified the guards in instances where

the incoming message type was found to be inconsequential; doing so prevented the tool from

exploring artificially large expressions involving the disjunction of these enumerated types.

The resulting protocol resulted in an error discovered by the model checker due to the cache

process receiving an unexpected message. We fixed this case by adding a concrete snippet

describing the desired behavior of the cache. Once again we left the guards unspecified, but

the pre-conditions and update constraints were predicated by identical values for the input

message fields and internal process variables, as seen in the violating trace.

Continuing in a similar manner, we added concrete snippets to fix error traces as we

encountered them. In some cases, the tool identified inconsistencies between the added trace

and a pre-existing constraint. We found it straightforward to reconcile these differences before

69



converging to a protocol that model checked. The final synthesis step took a little over 30

minutes, exploring over four million states during model checking. The generated transit

specification had a total of 50 Transitions.

4.4.4 Discussion and Limitations

We found the primary convenience of using transit to be the manner in which the initial

specification phase and the iterative debugging phases could be expressed differently. Although

it was natural to transcribe the bulk of the protocol symbolically from the algorithmic description

of flows, this description was invariably incomplete. Several corner cases, for which the behavior

was not explicitly specified were discovered during model checking. Most of these errors

occurred due to unintended interactions between flows. The unexpected message condition

cited above resulted from a cache process that was participating in a read-write-back race

scenario. transit generalized the concrete fixes provided by the programmer in a manner

that was guaranteed not to contradict the constituent flows. Fixing this bug symbolically would

have required reasoning about the impact on both these flows. Similarly, another coherence

violation was the result of the sharer set in the directory being updated incorrectly when a

previous owner was downgraded. Again, the fix involved adding a snippet that concretely

specified the next contents of the sharer set with the pre-condition specifying only the erroneous

case.

One limitation of the transit approach is that the “shape” of the protocol is assumed

to be provided and complete. For instance, if a particular transition is not provided by the

programmer, then it results in a deadlock or liveness violation during the model checking run.

To fix the problem, the programmer needs to add additional Transition blocks or additional

guard-action blocks within a Transition block. This is a case where a purely concrete fix is

not sufficient, because the programmer has to specify the missing behavior, perhaps using

concolic snippets. If this part of the behavior is missing from the textual description, then the

programmer might indeed have to resort to reasoning about the entire protocol to deduce

the correct behavior. In summary, the transit approach does not infer missing transitions.

Further, as we have already mentioned, liveness requirements are not supported by transit, as

a consequence of the choice of model checking framework (Murϕ) that transit is integrated

with. We seek to address both of these limitations in the work described in subsequent sections.

70



5
SyGuS

After building transit, we realized that the synthesis problem which we solved with a domain

specific synthesizer in transit shared a lot of similarities with other synthesis problems

addressed in literature [JGST10, Gul11, GJTV11, BCG+13, SSA13]. Although the synthesis

problems solved by various approaches are similar in spirit, the disparate input formats accepted

by each tool, and the disparate assumptions made by each tool about the search space of

programs made it impossible to compare the relative merits of various synthesis techniques. A

similar problem experienced by the constraint solving community led to the creation of the

SMT-LIB standards [BST10a, BST10b]. The motivation behind the SMT-LIB standards was to

specify a common input language (the SMT-LIB language) and a set of background theories,

so that SMT solvers which accepted the SMT-LIB language could be compared in a uniform

manner, with the same inputs. Inspired by the SMT-LIB approach, we formulated an input

format to specify synthesis problems. This effort resulted in the creation of the Syntax-guided

Synthesis (SyGuS) language [RU14], and a competition [AFSSL14] along the lines of the

annual Satisfiability Modulo Theories Competition (SMT-COMP) [Org05].

To encourage adoption, we attempted to keep the SyGuS language as close to the SMT-LIB

language as possible. The SyGuS language extends the SMT-LIB language with constructs for

specifying synthesis problems, and inherits the set of background theories from SMT-LIB. We

briefly describe the components of a SyGuS problem here, by way of examples, and refer the

reader to the language reference [RU14] for details on the specific syntax of SyGuS.

At a high level, the functional synthesis problem consists of finding a function f such

that some logical formula ϕ, which captures the correctness of f is valid. In syntax-guided

synthesis, the synthesis problem is constrained in three ways: (1) the logical symbols and their

71



interpretations are restricted to a background theory, (2) the specification ϕ is limited to a

first order formula in the background theory with all its variables universally quantified, and

(3) the universe of possible functions f is restricted to syntactic expressions described by a

grammar. We now elaborate on each of these points, and conclude this chapter by comparing

and contrasting SyGuS with other meta-synthesis frameworks proposed in literature.

5.1 Correctness Specification

For the function f to be synthesized, we are given the type (or sort, if one wishes to use SMT

parlance) of f and a formula of the form ∃ f ∀ x ϕ[f, x] as its correctness specification. The

formula ϕ[f, x] is a quantifier-free Boolean combination of predicates from the background

theory, symbols from the background theory, and the function symbol f, all used in a type-

consistent manner.

Example 2. Assuming the background theory is LIA (Linear Integer Arithmetic), consider the

specification for a function f of type int× int 7→ int:

ψ1 ≡ ∃ f ∀ x,y ϕ1[f, x,y], where,

ϕ1[f, x,y] ≡ f(x,y) = f(y, x)∧ f(x,y) > x.

Note that all the variables in the formula ψ1 are bound to the universal quantifier, and all the

unknown functions (in this case, just f) are existentially quantified. A given function f ′ satisfies

the above specification if the quantified formula ∀ x,y ϕ1[f 7→ f ′] holds, or equivalently, if the

formula ϕ1[f 7→ f ′] is valid. The notation ϕ[f 7→ f ′] indicates that all occurrences of f in ϕ[f, x]

are replaced by f ′.

5.2 Set of Candidate Expressions

To make the synthesis problem tractable, as well as to allow users to encode any domain-specific

knowledge about the search space of programs, the “syntax-guided” version allows the user

to impose structural (syntactic) constraints on the set of possible functions f. The structural

constraints are imposed by restricting f to the set L of functions defined by a given context-free

grammar GL. Each expression in L has the same type as that of the function f, and uses the

symbols in the background theory T , composed according to the rules of the grammar GL, and

the variables corresponding to the formal parameters of f.

72



Example 3. Suppose the background theory is LIA, and the type of the function f is int× int 7→ int.

We can restrict the set of expressions f(x,y) to be linear expressions of the inputs by restricting the

body of the function to expressions in the set L1 described by the grammar below:

linterm := x | y | intconst | linterm+ linterm

Alternatively, we can restrict f(x,y) to conditional expressions with no addition by restricting the

body terms from the set L2 described by:

term := x | y | intconst | ITE(cond, term, term)

cond := term 6 term | cond∧ cond | ¬cond | (cond)

Grammars can be conveniently used to express a wide range of constraints, and in particular,

to bound the depth and/or the size of the desired expression.

5.3 The Problem Definition

Informally, given the correctness specification ψ of the form ψ , ∃ f∀ xϕ[f, x], with ϕ[f, x] as

its quantifier free part, and the set L of candidates, we want to find an expression e ∈ L such

that if we use e as an implementation of the function f, the formula ϕ is valid. Let us denote

the result of replacing each occurrence of the function symbol f in ϕ with the expression e by

ϕ[f 7→ e]. Note that we need to take care of binding of input values during such a substitution:

if f has two arguments and expressions in L refer to the formal parameter names of f as x

and y, then every occurrence of the form f(e1, e2) in the formula ϕ must be replaced with

the corresponding expression e[x 7→ e1,y 7→ e2] obtained by replacing x and y in e by the

expressions e1 and e2, respectively. We can now define the SyGuS problem:

Given (1) a background theory T , (2) a typed function symbol f, (3) a quantifier-

free formula ϕ[f, x] over the vocabulary of T along with f, and the set of variables

x, and (4) a set L of expressions over the vocabulary of T , the formal parameters

of f, and of the same type as f, find an expression e ∈ L such that the formula

ϕ[f 7→ e] is valid modulo T .

Example 4. For the specification ϕ1 presented earlier, if the set of allowed implementations is

L1 as shown before, there is no solution to the synthesis problem. On the other hand, if the set

73



of allowed implementations is L2, a possible solution is the conditional if-then-else expression

ITE(x > y, x,y).

In some special cases, it is possible to reduce the decision problem for syntax guided

synthesis to the problem of deciding formulas in the background theory using additional

quantification. For example, every expression in the set L1 is equivalent to ax + by + c, for

integer constants a,b, c. If ϕ is the correctness specification, then deciding whether there

exists an implementation for f in the set L1 corresponds to checking whether the formula

∃a,b, c ∀ x ϕ[f 7→ ax + by + c] is true, where x is the set of all free variables in ϕ. This

reduction was possible for L1 because the set of all expressions in L1 can be represented by

a single parameterized expression in the original theory. However, the grammar may permit

expressions of arbitrary depth which may not be representable in this way, as in the case of L2.

5.4 Comparison with other Meta-synthesis Frameworks

Broadly speaking, SyGuS can be thought of as a meta-synthesis framework: it essentially allows

a concise description of any synthesis problem whose solution space can be described using a

context-free grammar and function symbols in some combination of background SMT theories,

and whose properties can be described using a universally quantified formula. We now compare

and contrast SyGuS with some other frameworks that have been proposed in recent literature,

which have similar goals.

5.4.1 sketch and Rosette

sketch [SLRBE05, STB+06, SAT+07, SLJB08, Sol09] and Rosette [TB13, TB14] are both

meta-synthesis frameworks that were designed to be embedded within a language: the sketch

language is C-like, whereas Rosette is embedded within the functional language, Racket. As

with SyGuS, the space of programs is described using a context-free grammar in Rosette, and

using generators — which use a combination of regular and context-free constructs to describe

the search space — in sketch.

Unlike SyGuS, these frameworks allow the specification for the program to be synthesized

to be written as a program. sketch uses a subset of the C programming language to describe

the behavior of the program to be synthesized. This C program could possibly be sub-optimal

or unoptimized, with the sketch for the program describing the shape of an optimized version.

Rosette, on the other hand, specifies the properties of the program to be synthesized using a

74



SyGuS sketch Rosette FlashMeta

Specification language SMTLIB-like C-like Racket Inductive spec.

Program space CFG Generators CFG CFG

Full formal specifications Yes Yes Yes No

Inductive specifications Yes Yes Yes Yes

Solvers extensively use ranking? No No No Yes

Language and Platform agnostic? Yes No No Relatively

Intended audience
Synthesis

Programmers
Programmers, Domain

Researchers Students experts

Existence of multiple solvers Yes No No No

Table 5.1: Comparison of various meta-synthesis frameworks

combination of assertions, pre-conditions and post-conditions on the program. Needless to say,

these specification techniques can be much more expressive than the first order specifications

that SyGuS allows. As a consequence, these techniques sometimes require inputs from the

programmer — in the form of pragmas in the case of sketch — or restrict the language to a

safe, and decidable subset — as is the case with Rosette.

The differences between sketch and Rosette on the one hand and SyGuS on the other

stem from the design choices made with the intended audience in mind. sketch and Rosette

are both intended to enable programmers synthesize usable code, whereas SyGuS intends to

cleanly abstract the core synthesis problem in a language and platform agnostic manner, to

encourage adoption and spur research in program synthesis techniques. Indeed, the relatively

low entry barrier has led to a multitude of solvers competing in the 2015 SyGuS competition.

Lastly, we note that regardless of the exact logic used to specify properties of the program

to be synthesized, SyGuS, sketch and Rosette all support full and formal specifications, i.e.,

it is possible for specifications to unambiguously and formally describe the behavior of the

program to be synthesized for any input.

5.4.2 FlashMeta

FlashMeta [PG15] is another meta-synthesis framework which is geared towards synthesis

from inductive specifications [PG15]. An inductive specification is a quantifier free first-order

predicate, where each atom constrains the behavior of the desired program on a specific concrete

input. Various other techniques for program synthesis using inductive specifications [Gul11,

SG12, LG14, BGHZ15, KG15] can be expressed using the FlashMeta framework [PG15].

75



Like SyGuS, FlashMeta uses a context-free grammar to describe the space of candidate

programs. However, unlike SyGuS, FlashMeta does not assume the existence of background

SMTLIB theories, and thus does not restrict the space of programs to consist only of function

symbols from some background theory. FlashMeta allows any function that can be expressed

as a pure C# function to be used in the context-free grammar that describes the search space

for candidate programs. For programs that operate on infinite domains, such as the domain of

strings and integers, inductive specifications can be viewed as an under-approximation of a

complete specification. It is possible that two behaviorally different programs both satisfy a

given inductive specification. FlashMeta uses domain specific ranking schemes to determine

which program is most likely to be the program desired by the user from among a set of

programs which all satisfy the inductive specification [PG15, SG15]. Ranking is especially

important when inductive specifications are used, as there always exists a trivial solution which

is a large case split over all the concrete inputs referred to in the inductive specification. Such a

solution is undesirable, because it does not generalize well to unseen inputs.

A novel feature of FlashMeta, that is not present in any of the other meta-synthesis frame-

works discussed in this dissertation, is the use of witness functions [PG15]. A witness function is

specified by a programmer, who, in this case is assumed to be an expert, with a deep knowledge

of the kinds of programs that are likely to be useful for an end user. Consider an inductive

specificationϕ, for a function fwhich is to be synthesized. Further, suppose that the synthesizer

is exploring the possibility that the top-level operator for f is F. The shape of the program is

thus hypothesized to be F(a1,a2, . . .an), where the arguments ai now need to be synthesized.

A witness function ωj(ϕ) deduces a specification ϕj on the jth argument to F. This essentially

allows FlashMeta to decompose the synthesis problems into multiple sub-goals, which in turn

leads to scalable synthesis algorithms.

We conclude the comparison with other meta-synthesis frameworks by noting that Table 5.1

compares and contrasts the various meta-synthesis frameworks along different dimensions and

summarizes the comparison that we have just presented.

76



6
Enumerative Strategies for SyGuS Solvers

This chapter describes how enumerative strategies can be used to solve instances of the SyGuS

problem. The first strategy we describe is a straightforward extension of the algorithm used to

infer expressions in transit, presented in Section 4.3. We then discuss recent advances made

in the area of SyGuS solvers, and present an algorithm for a class of SyGuS instances variously

termed single invocation [RDK+15], separable [ACR15], or single-point definable [MNS16]

in recent literature. The algorithm is enumerative in spirit, but uses a divide-and-conquer

approach by synthesizing multiple expressions, each of which is correct for a subset of inputs,

and then attempts to unify [ACR15] these expressions using conditionals.

6.1 esolver: An Enumerative SyGuS Solver

Having defined the SyGuS problem, as well as the language to describe instances of the SyGuS

problem, we built a solver for such instances based on enumerating candidate expressions,

which we dub esolver. The core algorithms used in esolver are similar to the algorithms

for inferring expressions in transit, described in Algorithms 4.1 and 4.2. We use the notion

of a signature to prune the space of expressions to be searched. The key differences from the

algorithms presented in Algorithms 4.1 and 4.2 are that:

• esolver does not assume that all well-typed expressions are a part of the candidate space,

and instead enumerates expressions using the grammar provided as part of the problem

instance.

• The notion of a signature, which we use to prune the search space, now needs to take into

account the non-terminal in the grammar from which an expression was derived, to avoid

spurious pruning.

77



• esolver handles several extensions to the SyGuS solver — such as the let construct in

constraints and grammars [RU14], which we have not described here.

We do not present the details about the implementation of esolver, as it is a rather

straightforward extension of the algorithms presented in Section 4.3. esolver won the 2014

SyGuS competition with four other solvers participating. The implementation of esolver—

along with two other implementations, one based on symbolic search [GJTV11, JGST10]

and the other based on a stochastic search [SSA13] — has been made available as a base-

line for other participants to compare against, and possibly build upon, and is continually

maintained [JRU13].

The 2015 SyGuS competition had several new solvers competing, the most notable of

general-purpose solver being the CVC4 solver [RDK+15]. The CVC4 solver was the overall

winner of the 2015 SyGuS competition, with esolver coming in second place overall. However,

despite CVC4 being the overall winner, there were a set of benchmarks which could not be

solved by the CVC4 solver, but which esolver could solve, as well as the other way around.

In addition, a solver based on a unification approach was also proposed by Radhakrishna et.

al. [ACR15], which did not participate in the 2015 SyGuS competition, but has an impressive

performance nonetheless. The next section provides a brief overview of these new algorithms

to solve the SyGuS problem, and discusses the capabilities and limitations of esolver (and

enumerative strategies in general) with respect to the newer algorithms.

6.2 Capabilities and Limitations of esolver
These advances in SyGuS solvers led us to look more closely at the capabilities and limitations

of enumerative solution strategies. We observed that the newer solvers performed extremely

well with a class of specifications that have been termed variously as single-invocation specifi-

cations [RDK+15], or separable specifications [ACR15]. We note that the specifications in a

large fraction of the SyGuS benchmark suite fall into this class. We also observed that both the

newer solvers made extensive use of the specification itself in the actual synthesis algorithms;

whereas esolver makes very minimal use of the specifications in driving the search.

6.2.1 Separable Specifications

We treat the notion of separability as a semantic notion in this dissertation. We shall only

consider SyGuS specifications which refer to only one unknown function to be synthesized in

78



the rest of this chapter. The definitions can be extended to specifications which involve multiple

functions, but will not be very useful in the context of this dissertation. Also, we shall assume

that the background theory T , over which the SyGuS problem is defined, is decidable.

Intuitively, a specification, which describes the constraints on an unknown function f, is

separable, if and only if it admits a solution where, for any concrete input c1, the value of f(c1)

is independent of the value of f(c2), where c2 6= c1 is any other concrete input. This definition

corresponds very closely with the definition of a single-point definable specification, presented

in a concurrent work [MNS16].

There has been a lot of interest recently in separable specifications because the synthesis

problem for such specifications can be reduced to determining the truth of a first-order sentence.

This problem is decidable, provided that the background theory T is decidable.9 We will explain

this reduction in greater detail later in this chapter. Apart from this advantage, separable

specifications, by definition, allow for synthesis strategies that produce solution fragments

(or sub-expressions) which are correct on some subset of inputs. These sub-expressions may

then be combined using an if-then-else operator, or other techniques. We explore one such

algorithm in this chapter.

Although we have informally defined the semantic notion of separability, checking if a SyGuS

specification is separable using this semantic notion is challenging, and is an open problem. Most

recent approaches [ACR15, RDK+15, MNS16] instead check if a specification satisfies some

syntactic restrictions which are sufficient to prove separability [ACR15, RDK+15], or check that

the specification satisfies a stronger property, such as single-point refutability [MNS16], which

is easier to check for. In this dissertation, we adopt a syntactic check for separability, which

is performed after some amount of rewriting of the original specification. We now provide a

few examples of SyGuS specifications which are separable and otherwise, to give the reader an

intuitive feel for the notion of separability.

Example 5. Consider the following specification, which describes a binary function f which

computes the maximum of its arguments:

ψsep1 ≡ ∃ f ∀ x,y (f(x,y) > x∧ f(x,y) > y ∧ (f(x,y) = x∨ f(x,y) = y)) (6.1)

ψsep1 is separable, because all applications of f have the same arguments, and therefore never

9Ignoring any syntactic restrictions on the solution.

79



correlates the values that f can evaluate to, for different inputs. Further, there exists a solution

f(x,y) ≡ max(x,y), whose output, for any given input, never depends on its output for some

other input.

This example seems to indicate that a purely syntactic definition suffices: A specification is

separable if and only if all occurrences of f, which is the function to be synthesized for, in the

specification involve applications of f to the same set of arguments. However, the next two

examples show that this is not the case.

Example 6. The following specifications are separable even though f is applied to different

arguments in each specification:

ψsep2 ≡ ∃ f (f(1) = 1∧ f(2) = 2)

ψsep3 ≡ ∃ f ∀ x,y ((x = 1⇒ f(x) = 1)∧ (y = 2⇒ f(y) = 2))

ψsep4 ≡ ∃f∀ x,y (x = y⇒ f(x) = f(y))

The specifications ψsep2 and ψsep3 are separable, because each clause in each of these specifications

constrains the value of f at exactly one point. Any solution h, such that h(1) = 1 and h(2) = 2

is a valid solution. The specification ψsep3 is semantically equivalent to ψsep2. The specification

ψsep4 is in fact a tautology — recall that f is a function, and cannot evaluate to different results

when applied to the same arguments — and therefore separable. Any function can be used as a

solution for ψsep4.

Thus, if all function applications are over the same arguments, then the specification is definitely

separable, but this is not a necessary condition.

Example 7. The following specifications, which state that f is a monotonic function, are not

separable, because they correlate the value of f applied to different arguments:

ψnonsep1 ≡ ∃ f ∀ x,y (x 6 y⇒ f(x) 6 f(y))

ψnonsep2 ≡ ∃ f ∀ x (f(x) 6 f(x+ 1))

To be a solution to ψnonsep1 and ψnonsep2, a function h needs to be such that h(x) 6 h(y) for all

x 6 y. Clearly, the output of any candidate solution h on a concrete input c1 cannot be chosen

independently of all other concrete inputs c, if monotonicity is to be maintained.

80



The following example demonstrates the subtleties of the definition of separability, and

also that a purely syntactic definition of separability is likely to be insufficient.

Example 8. The following specification for the constant function f, which takes an integer as

input and returns an integer is separable.

ψsep5 ≡ ∃ f ∀ x (f(0) = 0∧ f(x+ 1) = f(x))

Although the specification ψsep5 correlates the output of f applied to distinct arguments, it is

equivalent to the specification ∃ f ∀ x f(x) = 0, which is obviously separable.

As Example 8 demonstrates, the semantic notion of separability, which could involve arbitrary

equivalences between formulas, is difficult to check for. Consequently, we define the notion of

plain separability, which is a syntactic notion that is easier to check for.

Plainly Separable Specifications

Consider a SyGuS specificationψ, over some background theory T . The specificationψ can refer

to functions defined in the theory T , the unknown function f, of arity n, as well as to variables

in the set x = {x1, x2, . . . , xm}. Further, ψ has the form ψ , ∃ f ∀ x1, x2, . . . xm ϕ[f, x]. Where

ϕ[f, x] is a quantifier-free formula over symbols in the background theory T , the unknown

function f as well as the variables in x.

We denote byϕcnf , a formula which is equivalent toϕ, and in conjunctive normal form (CNF).

A formula is said to be in CNF if it has the form c1 ∧ c2 ∧ · · ·∧ ck, where each ci, for i ∈ [1,k]

— called a clause— has the form ai1∨ai2∨ · · ·∨aimi
, where each aij, i ∈ [1,k], j ∈ [1,mi] is

an atom, and does not involve conjunctions or disjunctions, but could possibly appear negated.

Thus, all negations are restricted to be applied only to atoms. Note that we require ϕcnf to be

equivalent to ϕ and not just equi-satisfiable with respect to ϕ. For simplicity of presentation, we

assume that the straightforward, exponential transformation to CNF is used to derive ϕcnf from

ϕ. This is not a problem in practice, because ϕ is typically not large. If desired, techniques

like Tseitin’s transform [Tse83] can also be used, provided appropriate care is exercised while

checking validity: checking that the negation of a equi-satisfiable formula produced by Tseitin’s

transform, which contains auxiliary variables introduced by the transform is unsatisfiable,

may no longer imply that the original formula is logically valid. Having set up the necessary

definitions and the form of the specification ψ, we can now define plain separability.

81



Definition 1. The SyGuS specification ψ, of the form described above, with ϕ as its quantifier

free part, is called plainly separable if and only if for each clause c in ϕcnf , we have that c is either

a tautology, or every occurrence of f in c has f applied to the same arguments.

The notion of a single-point refutable specification, which has been proposed in concurrent

work [MNS16] is a more sophisticated definition for the concept of plain separability. But

it requires that the domains and ranges of all functions, including the ones defined by the

background theory T be extended by a distinguished undefined value. In principle, there exist

specifications that are not plainly separable by our definition, but are still single-point refutable.

Such specifications can indeed be solved for by the algorithm which we shall propose later in

this chapter, but would be rejected based on our definition of plain separability. Fortunately

however, all of the benchmarks in the classes that we have targeted in the SyGuS benchmark

suite have plainly separable specifications.

Both the unification based solver, and the CVC4 SyGuS solver exploit the (plain) separability

of specifications, when applicable, to apply an algorithm that leverages such specifications.

As mentioned earlier, a large fraction of the SyGuS benchmark suite consists of separable

specifications, so a better algorithm for such specifications has immediate practical value. We

shall focus only on separable specifications in the rest of this chapter.

6.2.2 Black Box and White Box Algorithms

All the three baseline SyGuS solvers can be broadly classified as being black box algorithms, and

can all be viewed as instantiations of the counterexample guided inductive synthesis (CEGIS)

paradigm [SLRBE05]. These solvers use the specification ϕ only to verify that a proposed

solution is correct, and possibly to obtain concrete values of the universally quantified variables

on which the proposed solution fails. These concrete values could then be possibly used by

the black box solvers to rule out the current solution from future solution proposals. The

specification is not directly used to guide the search in any way. The CVC4 and unification

based algorithms, on the other hand, can be considered white box algorithms. These algorithms

make extensive use of the specification to derive a solution, and perform very minimal, if any,

enumeration; instead preferring to use theory-specific synthesis algorithms. We briefly describe

both of these strategies, and compare and contrast their strengths and limitations with respect

to enumerative approaches. To describe the two algorithms, we consider a plainly separable

SyGuS specification ψ, over some background theory T , of the form ψ , ∃ f ∀ x ϕ[f, x], which

82



refers to the single unknown function f, symbols of T , and the set of universally quantified

variables x. As usual, ϕ[f, x] is a quantifier-free formula over symbols of T , f and variables in x.

The CVC4 SyGuS Solver

The description of the CVC4 SyGuS solver presented here is a highly condensed version of the

presentation from the original paper describing the algorithm [RDK+15]. Let us denote by

x , {x1, x2, . . . , xn}, the set of quantified variables in the separable SyGuS specification ψ. The

type or sort of each variable xi is denoted by di. Given that ψ is separable, we can replace

every occurrence of an application of f in the quantifier-free part, ϕ, of ψ with a single fresh

variable o, whose type (or sort) is the same as the range of f to obtain the following logically

equivalent formula:

∀ x ∃o ϕ[o, x]

Instead of attempting to solve for this formula directly, the CVC4 SyGuS solver attempts to

establish the falsehood of the negation of this formula, which is:

∃ x ∀o ¬ϕ[o, x] (6.2)

To prove that this formula is false, consider the following game played in rounds between Eloise

and Abelard. At the beginning of round i Eloise proposes a region Ri ⊆ d1 × d2 × · · · × dn,

and Abelard proposes a term ti[x], such that ϕ[ti[x], x] is true in some region Si, such that

Si ∩ Ri 6= ∅. Further, we have that R0 ≡ d1 × d2 × · · · × dn, and that Ri+1 ⊆ (Ri \ Si) for all

i. Abelard wins if in some round j, Eloise is forced to propose Rj ≡ ∅. Eloise wins if in some

round j, Abelard is unable to come up with a term tj. It is easy to see that (6.2) is false if and

only if Abelard wins, and is satisfiable if and only if Eloise wins.

The game just described is the essence of the quantifier instantiation procedure performed

within SMT solvers to prove the falsehood of formulas such as those shown in (6.2). The CVC4

SyGuS solver, takes advantage of being closely integrated with the CVC4 SMT solver, and having

access to its internals. A proof of falsehood of (6.2) can then easily be used to construct an

expression which serves as the solution for the unknown function f. Continuing with the game

analogy, such a proof would consist of the terms ti and the regions Ri, proposed by Abelard and

Eloise respectively, for each round. Suppose that the regions Ri are represented symbolically as

predicates, then it is trivial to construct an if-then-else ladder with the predicates corresponding

83



the regions as the conditions controlling which branch is chosen, and the appropriate terms ti

as the branches.

As an example of how this game may be played out on the specification shown in (6.1),

which is for a binary function that computes the maximum of its arguments, we first write the

formula whose falsehood is to be established from (6.1):

∃ x,y ∀o (o < x∨ o < y∨ (o 6= x∧ o 6= y)) (6.3)

0. In round 0, R0 ≡ true, and t0 ≡ x, which makes the formula (6.3) true in the region

x > y, which is a subset of R0

1. In round 1, R1 ≡ x < y, and t1 ≡ y, which makes the formula (6.3) true in the entire

region R1.

2. In round 2, Eloise is forced to set R2 ≡ false, thus proving the falsehood of (6.3).

The Unification based SyGuS Solver

As was the case with the description of the CVC4 solver, this description of the unification based

solver is also a highly condensed and simplified version of the presentation in the original paper

describing this algorithm [ACR15]. The algorithm is conceptually similar to the algorithm used

in the CVC4 SyGuS solver. However, the unification based algorithm uses an SMT solver as

a black box, and does not depend on having access to the internals of an SMT solver. Given

a separable SyGuS specification ϕ, whose form is as described earlier, the unification based

solver maintains a region R, for which a correct solution has not yet been discovered. It then

selects a term t[x] and plugs the term t[x] back into ϕ to determine a region R ′ where the term

t causes ϕ to be true. The algorithm then recurses on the region R \ R ′.

The working of the algorithm is perhaps best illustrated with an example. Consider the

specification shown in (6.1) again. At the beginning of the algorithm, R ≡ true.

1. Suppose the algorithm picks the term x. Plugging this back into (6.1) for the term f(x,y),

we obtain the region x > y. The algorithm updates R to x < y.

2. The algorithm then picks the term y. Plugging this term back into (6.1), we obtain

the region y > x. The algorithm updates R to be the empty region and terminates by

unifying the terms x and y using an if-then-else ladder predicated with the regions in

which substituting the respective term for f(x,y) in ψsep1 causes the formula to become

true.

84



The key difference between the unification based algorithm and the CVC4 algorithm is

in how terms are picked. The CVC4 algorithm piggy-backs on the sophisticated quantifier

instantiation mechanisms within the SMT solver. The unification based algorithm on the other

hand implements domain-specific solution techniques to derive terms that are likely to result in

a solution with a smaller number of conditionals. The paper by Radhakrishna et. al. [ACR15]

describes two algorithms to solve for terms: one for the domain of linear integer arithmetic,

and another for the domain of fixed size bit vectors.

6.2.3 A Comparison of White Box and Black Box Algorithms

The white box algorithms described in this section have some advantages over black box

algorithms. In turn, the black box algorithms have their own advantages over the white box

algorithms. We specifically refer to the black box algorithm implemented in esolver for

the purposes of this comparison, although a lot of the points are applicable to the stochastic

solver [SSA13] and the symbolic solver [JGST10, GJTV11] as well.

Strengths of White Box Algorithms

• Enhanced Scalability: The size of the expression to be synthesized does not have a large

impact on the execution time of both the white box algorithms described in this section.

Indeed, both of the algorithms can easily synthesize expressions with tens or hundreds of

if-then-else branches. On the other hand, enumerative algorithms struggle to synthesize

large expressions. This is primarily because the number of expressions in the search space

typically grows exponentially with the size of allowed expressions. Because the enumerative

approach enumerates all expressions of a given size before trying a larger size, it severely

limits the scalability of a purely enumerative algorithm. The scalability of esolver, as it is

implemented, is also restricted by the fact that it caches every expression that it enumerates,

leading to a large memory footprint.

• Ability to use domain-specific techniques: The white box algorithms leverage the specifi-

cation itself in synthesizing a function that satisfies the specification. As a result, they can

leverage domain-specific insights and algorithms to efficiently solve the sub-problems they

construct. As already mentioned, the unification based solver implements a per-domain

algorithm to choose terms. Similarly, the CVC4 SyGuS solver, which is deeply embedded

within the CVC4 SMT solver, has a large portfolio of quantifier instantiation and domain

85



specific solution techniques — implemented as part of the CVC4 SMT solver — at its disposal,

and can select the most efficient strategy on a domain-by-domain basis as required.

Strengths of the Enumerative Black Box Algorithm

• Genericity: esolver uses the exact same algorithm regardless of what the domain being

solved for is. Any improvements in the algorithm result in improvements across the board,

for all domains. On the other hand, the white box algorithms’ use of domain-specific solvers

requires re-implementing any new algorithmic advance in each of the domain-specific

algorithms.

• Ability to Generalize: Recall that the SyGuS language fully supports inductive specifications,

or specifications where the behavior of the desired function is expressed as a finite set of

concrete input-output examples. Such specifications can be useful when a formal specification

is difficult to write. The ICFP benchmarks which were derived from a programming contest

held in conjunction with ICFP 2013 [AII+13]. The specifications for these benchmarks are in

the form of a set of input-output examples which describe the output of the unknown function

on various inputs. Assuming that the enumerative algorithm scales, it would produce the

most concise expression in the search space that behaves correctly on all the input-output

examples. Further, the output of the expression would be well-defined on unseen inputs.

On the other hand, the white box solvers cannot do much better than generate a case-split

on the concrete inputs, rendering the output of the expression being undefined or arbitrary

on unseen inputs. It is thus not surprising that both of these solvers perform poorly on the

ICFP benchmarks [ACR15, RDK+15]. To be fair, esolver does not perform well on these

benchmarks either, but due to scalability constraints rather than algorithmic ones. In fact,

none of the solvers that competed in the 2015 SyGuS competition were effective at solving

these benchmarks.

• Ease of Searching through a Syntactically Restricted Space: Observe that the description

of the white box algorithms does not mention the “Syntax-Guided” nature of SyGuS at all.

The CVC4 algorithm either encodes the syntactic restriction using the theory of algebraic

data types built into CVC4, or applies a enumerative post-processing step to find a term

which is equivalent to the solution synthesized without syntactic restrictions. The former

results in large slowdowns [RDK+15], and the latter can sometimes result in failure. The

unification based solver does not concern itself with syntactic restrictions at all; however,

86



the enumerative post-processing step used in the CVC4 algorithm can be used in this setting

as well. Another possibility is to use a syntax aware unification operator, however this has

not been explored. Syntactic restrictions are often useful when synthesizing programs for a

low-power instruction set architecture, with a restricted set of operations, and are thus not

an artificial constraint.

The comparison presented above naturally makes one desire an algorithm which can be

generic, has the ability to generalize as well as the ability to enforce syntactic restrictions,

alongside the scalability to be able to synthesize functions which require large expression sizes

to describe. We describe an algorithm that fulfills this desire, at least to some extent, in the

next section.

6.3 Combining Enumeration with Unification

To develop a more efficient algorithm to solve instances of the SyGuS problem, we make the

following assumptions throughout this section:

• The SyGuS specification ψ is separable, and has the form ψ , ∃ f ∀ x ϕ[f, x]. Here f is

the only function to be synthesized, and x is a set of universally quantified variables of

appropriate types or sorts, while ϕ[f, x] is a quantifier-free formula that only refers to

symbols from the background theory T , the unknown function f and the variables in the set

x.

• Given that ψ is separable, we can assume that all occurrences of f in all clauses of ϕcnf have

f applied to the same arguments. If this is not the case, then we can transform ϕcnf [f, x]

to a logically equivalent formula ϕcan[f, x, a], which is also in CNF by introducing a set of

additional placeholder variables a , {a1,a2, . . . ,ap}, where p = arity(f) and a∩ x ≡ ∅ and

constraining them appropriately. For example, consider the following specification for the

binary function f, whose output is required to be greater than equal to each of its arguments,

whose quantifier-free part is already in CNF:

∃ f ∀ x,y f(x,y) > x∧ f(y, x) > x

This formula can be transformed into the following semantically equivalent formula, by

introducing additional variables a0 and a1 which represent the arguments to f which are

used in all terms referring to f. Note that quantifier-free portion of the transformed formula

87



is also is CNF, once the implications have been converted into disjunctions using standard

equivalences:

∃ f ∀ x,y,a0,a1 (((a0 = x∧ a1 = y)⇒ f(a0,a1) > x) ∧

((a0 = y∧ a1 = x)⇒ f(a0,a1) > y))

We will refer to the version of the specification ψ, canonicalized in this manner as ψcan, and

assume that it has the form ψcan , ∃ f ∀ x, a ϕcan[f, x, a].

• Lastly, we assume that the program space is described by two context-free grammars, rather

than just one unified grammar. The first grammar, which is a grammar for terms, denoted

GT comprises of the set of all terms, and does not include any conditional expressions. All

terms generated by GT have the same type as the range (or return type) of the unknown

function f. The second grammar called GP consists of the set of all Boolean valued atomic

predicates that can be combined using Boolean connectives — disjunctions, conjunctions and

negations — for use as the conditions in conditional expressions. Note that GP is assumed

not to contain disjunctions, conjunctions or negations of atomic predicates.10 Further, we

allow GP and GT to be mutually recursive, in that GP can refer to non-terminals in GT

and vice-versa. We note that most of the grammars in the SyGuS benchmark suite can be

transformed into this form relatively easily, using a conservative and lightweight analysis

on the context-free grammar describing the syntactic restrictions on expressions. In terms

of the assumptions on the original SyGuS grammar, we require that the original grammar

must allow a solution to the SyGuS problem, such that the solution is either a single term

drawn from GT , or a conditional expression of the form:

if (cond0) then term0

else if (cond1) then term1
...

else if (condn−1) then termn−1

else termn

Where each condi is a Boolean combinations of atoms, with each atom drawn from GP, and

each termi is a term drawn from GT .
10The algorithm described here would still be correct if GP contains Boolean combinations of atoms as well, but it
would not be as efficient.

88



Algorithm 6.1: Learn-DT: An algorithm to learn a decision tree
Input :A set of samples S.

An attribute function attrib : S→ Bm.
A labeling function label : S→ L.

Output :A decision tree that uses the attributes of samples to predict its label.
1 if all samples in S have the same label l then
2 return a tree which predicts l

3 abest ← attribute ai, i ∈ [1,m] which best classifies S.
4 if abest is undefined then
5 return ⊥
6 S+ ← subset of S where each sample has abest = true
7 S+ ← subset of S where each sample has abest = false
8 positive← Learn-DT(S+, attrib, label)
9 negative← Learn-DT(S−, attrib, label)

10 return a decision tree labeled with attribute abest with positive and negative as its
positive and negative sub-trees

6.3.1 Decision Trees

Consider a set of samples S , {s1, s2, . . . , sn} — each sample is some object, whose nature is

not relevant. Each sample si is associated with a vector ofm Boolean valued attributes. Let

attrib : S → Bm be a function that maps each sample s ∈ S to its attribute vector attrib(s).

Further, we define L as a set of labels, with a labeling function label : S→ L which maps each

sample s ∈ S to its label label(s). Now, consider the problem of predicting label(s) for each

s ∈ S, given information only about attrib(s) for each s ∈ S. This is a well studied problem in

machine learning and is typically solved by using an algorithm, such as the ID3 algorithm or

the C4.5 algorithm, to learn a reasonably compact decision tree which makes decisions based

solely on the attributes [Qui86, Qui87, Qui96]. Algorithm 6.1 shows an algorithm to learn

such a decision tree, which is now considered folk knowledge.

An interesting aspect of Algorithm 6.1 is how the best attribute is chosen in line 3. It has

been shown that constructing the optimal (in terms of the size of the tree) decision tree is

np-complete [HR76, Mur98]. Because typical sample sets as well as the length of attribute

vectors can be large, most algorithms to learn decision trees use a heuristic to greedily pick

an attribute in line 3 of Algorithm 6.1. Greedy heuristics which maximize information gain at

each level of the learned decision tree have been shown to be particularly effective in machine

learning literature [Qui86, Qui87, Qui96].

89



Entropy and Information Gain

The entropy of a sample set S, denoted H(S) is a measure of uncertainty in the set S. The

mathematical definition of entropy, adapted to our setting is as follows:

H(S) = −
∑
l∈L

Pr(l) log2(Pr(l)) (6.4)

where Pr(l) denotes the fraction of samples in S which are labeled l. Note that we refer to the

Shannon entropy, whenever we use the term “entropy” in an unqualified manner throughout

this dissertation. The concept of information gain is defined in terms of entropy. The information

gain obtained by splitting a sample set S on an attribute a is the measure of the difference in

entropy of S and the entropy of the resulting sets S+ and S−, which are formed by splitting on

the attribute a. Mathematically, the information gain G(S,a) obtained by splitting a sample

set S, based on an attribute a, into two partitions S+ and S− can be computed by using the

following equation:

G(S,a) = H(S) −
(
|S+|

|S|
H
(
S+
)
+

|S−|

|S|
H
(
S+
))

(6.5)

Having provided the reader with an overview of decision trees and algorithms to learn such

decision trees, we now present how they can be used, in conjunction with enumerative strategies,

to solve instances of the SyGuS problem.

6.3.2 Program Synthesis using Decision Trees

Recall the Algorithm 4.1 SynthForPoints, respectively, shown in Chapter 4. Algorithm 4.1

essentially synthesizes one expression such that the expression satisfies the given specification

for all the concrete inputs in a given set P. In essence, it enumerates all conditional expressions

implicitly as a part of its search.

The basic idea behind the algorithm which we now present is that we do not need to

synthesize an expression which satisfies the specification for all concrete inputs. We can learn a

set E of expressions, such that each expression satisfies the specifications for some subset P ′ of

the concrete inputs P, such that for every concrete input in p ∈ P, there exists some expression

in e ∈ E such that e satisfies the specification at p. Once we have gathered such a set E, we

can then enumerate a sufficient set of atomic predicates from GP. These atomic predicates can

90



then be combined using Boolean connectives to form the conditions in a conditional expression

that combines the terms in E to produce an expression which is correct over all the concrete

inputs. The computational problem of generating this conditional expression, which is correct

over all the concrete inputs, can be reduced to one of learning an appropriate decision tree, as

we describe in this section.

Formally, we are given a canonicalized, separable SyGuS specification for one function f

of the form ψcan , ∃ f ∀ x, a ϕcan[f, x, a] defined earlier in this section. We are also given two

grammars GT and GP which are as described earlier. We abuse notation slightly, and also use

GT and GP to refer to the sets of terms and predicates generated by the grammars GT and

GP respectively, whenever the context creates no opportunity for ambiguity. Further, we have

a set of valuations P of the variables in x ∪ a, where each σ ∈ P maps a variable v ∈ x ∪ a

to a value σ(v) of the appropriate type. We define a function L : P → 2GT , such that a term

t ∈ L(p), for any point p ∈ P if and only if ϕcan[t[p], x ∪ a 7→ p] evaluates to true. Note that

the notation ϕcan[t[p], x ∪ a 7→ p] denotes that first every occurrence of all variables from a in

t has been replaced by its valuation according to p, which is denoted as t[p]. Following this,

every occurrence of f(.) in ϕcan is replaced by t[p], and lastly, all other occurrences of variables

from x ∪ a in ϕcan are also replaced by their valuations according to p, which is denoted by

x ∪ a 7→ p.

Now, we can view the set of valuations P as a sample set. The labeling function is now

essentially a multi-labeling function L, which maps each point p ∈ P to a set of labels drawn

from the set GT . Further, for each point p ∈ P, the results of evaluating each predicate g ∈ GP
at p forms a vector of Boolean attributes for p, which may be of infinite length. Given these

parallels, it is now clear how we can treat this as a decision tree learning problem, except

for one wrinkle: that each sample may be multiply labeled. The possibility that a point may

be labeled with multiple terms causes problems in the computation of entropy according to

Equation (6.4), which requires the fraction of samples labeled with a particular label. Applying

this equation naïvely will result in
∑
l∈L Pr(l) 6= 1 and thus the function Pr will no longer be a

probability mass function.

To deal with this wrinkle, given a sample set P, we define a conditional distribution on

the probabilities of labels, i.e., the probability of a point p being assigned a label l ∈ L(p),

conditioned on the fact that a particular point p ∈ P has been chosen. In the original single

label formulation of the problem, this probability is either zero or one — once we pick a point

91



p ∈ P, we know that it can be assigned only one label: label(p). In the multi-label case, our

formulation takes the view that once a point p ∈ P has been picked, it can be assigned any

label l ∈ L(p) according to a probability distribution. This conditional probability distribution

is defined as follows:

Pr(label(p) = t | p) =


0 if t /∈ L(p)

cover(t)∑
t ′∈L(p)

cover(t ′)
if t ∈ L(p)

(6.6)

where, given a sample set P, the function cover : GT → N denotes how many samples in P

can possibly be labeled with a given term t ∈ GT , and is a rough measure of how relevant a

particular term is. This function is defined as follows:

cover(t) ≡ | {p ∈ P : t ∈ L(p)} | (6.7)

Now, given the sample set P, we can determine the unconditional label probabilities by summing

the conditional probability shown in Equation 6.6 over all the points in P. Thus, we have, the

probability of a randomly chosen point from P being labeled with t ∈ GT is:

Pr(t) =
∑
p∈P

Pr(label(p) = t | p)× Pr(p)

Now, assuming that each point p ∈ P is equally likely to be chosen, i.e., we sample from P

uniformly at random, we obtain:

Pr(t) =
1
|P|

∑
p∈P

Pr(label(p) = t | p) (6.8)

We can now directly use Equation 6.8 to compute the entropy according to Equation 6.4, and

thus information gain according to Equation 6.5, which can then be used to learn a decision tree

based on the greedy information gain heuristic. Finally, we note that the conditional distribution

that we have defined in Equation 6.6 makes intuitive sense, and works well in practice, as we

will demonstrate shortly. However, we note that better choices for this probability distribution

might still be possible, and this conditional distribution must therefore be viewed as tunable

heuristic for the algorithm.

92



Row # p ∈ P L(p) attrib(p)

1 〈x : 2,y : 1〉 {x} 〈x < y : F, x = 0 : F,y = 0 : F〉
2 〈x : 1,y : 0〉 {x, x+ y} 〈x < y : F, x = 0 : F,y = 0 : T〉
3 〈x : 0,y : 1〉 {y, x+ y} 〈x < y : T, x = 0 : T,y = 0 : F〉
4 〈x : 1,y : 2〉 {y} 〈x < y : T, x = 0 : F,y = 0 : F〉

Table 6.1: A multi-labelled sample set over which a decision tree is to be learned

An Illustrative Example

We now illustrate the techniques which we have just described, with an example. Consider the

following specification which describes a binary function f, over integers, which is expected to

return the maximum of its arguments:

∃ f ∀ x,y f(x,y) > x∧ f(x,y) > y∧ (f(x,y) = x∨ f(x,y) = y

Suppose that the set of terms that we’re working with is {x,y, x+ y} and the set of predicates

is {x < y, x = 0,y = 0}. Further, the set P for our example contains the four valuations shown

in the second column of Table 6.1, with the third column showing the set of labels (terms) that

satisfy the specification at each sample (or point), and the fourth column showing the attribute

vector, which consists of predicates, and their truth value for the corresponding point. For

instance, the row numbered one in the table considers the valuation where x is two and y is

one. We see that the term x is the only term from among the terms x, x+ y and y that satisfies

the specification this point. Lastly, for this valuation, all the predicates that we consider, i.e.,

the predicates x < y, y = 0 and x = 0, evaluate to false as shown in the last column.

To learn a decision tree over this sample set, we need to evaluate the entropies that result

from splitting the set of valuations on each of the atomic predicates. We then choose the

predicate, splitting on which results in the smallest entropy, and split the set of valuations

according to the predicate. To illustrate, let us first consider splitting this sample set according

to the predicate x < y. Splitting the set of valuations using this predicate yields two partitions

the set of valuations P. Let us refer to these partitions P1 and P2, where P1 contains the

rows numbered one and two — where x < y evaluates to false — and P2 contains the rows

numbered three and four — where x < y evaluates to true. We need to compute the entropy

for each of these partitions. The total entropy for the partitioned set of valuations is then

93



Partition Points in Partition Label Probabilities Entropy

P1
〈x : 2,y : 1〉 Pr(label(p) = x) = 5

6
0.650022

〈x : 1,y : 0〉 Pr(label(p) = x+ y) = 1
6

Pr(label(p) = y) = 0

P2
〈x : 0,y : 1〉 Pr(label(p) = x) = 0

0.650022
〈x : 1,y : 2〉 Pr(label(p) = x+ y) = 1

6

Pr(label(p) = y) = 5
6

Table 6.2: Entropies that result by splitting the sample set shown in Table 6.1 using the predicate
x < y

Partition Points in Partition Label Probabilities Entropy

P1

〈x : 2,y : 1〉 Pr(label(p) = x) = 5
9

1.351644〈x : 1,y : 0〉 Pr(label(p) = x+ y) = 1
9

〈x : 1,y : 2〉 Pr(label(p) = y) = 1
3

P2 〈x : 0,y : 1〉
Pr(label(p) = x) = 0

0.5Pr(label(p) = x+ y) = 1
2

Pr(label(p) = y) = 5
2

Table 6.3: Entropies that result by splitting the sample set shown in Table 6.1 using the predicate
x = 0

the sum of entropies of each of these partitions, weighted by the fraction of valuations in the

respective partition.

Table 6.2 shows the partitions that result from splitting on the predicate x < y, as well as

the label probabilities computed according to Equation 6.8. Finally, the entropy corresponding

to each partition are computed according to Equation 6.4, using the set {x,y, x+ y} as the set

of all possible labels. Note that in this table, the partition named P1 corresponds to the rows

in Table 6.1 where the predicate x < y evaluates to false, and the partition P2 corresponds

to the rows where the predicate x < y evaluates to true. Also, for the purposes of entropy

calculations, we assume that 0× log2(0) = 0. The overall entropy that results from the split

using the predicate x < y is the weighted sum 1
2 × 0.650022+ 1

2 × 0.650022 = 0.650022.

Now, repeating the same procedure to determine the entropy obtained by splitting on the

predicate x = 0 yields the results shown in Table 6.3. The overall entropy from the split is the

weighted sum 3
4 × 1.351644 = 1

4 × 0.5 = 1.138733. The results of splitting on the predicate

94



x < y

use the term x

N

use the term y

Y

Figure 6.1: The decision tree learned for the sample set shown in Table 6.1

Algorithm 6.2: ExpandTermSet: Expand the labeling function L to include more terms

Input :A canonicalized SyGuS specification ψcan , ∃ f ∀ a, x ϕcan[f, x, a].
A list of n valuations of variables in x ∪ a, called P.
A stateful enumerator enumerator(GT ) for terms.
A map L from P to subsets of terms from GT .

Output : An expanded map L ′, such that for all p ∈ P,L ′(p) ⊇ L(p).

1 new_terms← the next KT terms from enumerator(GT )
2 foreach t ∈ new_terms do
3 s← 〈ϕcan[t[p], x ∪ a 7→ p], for p in P〉
4 if there exists a term t ′ 6= t, such that for all i ∈ [1, length(P)], s[i] iff t ′ ∈ L(P[i]) then
5 continue

6 foreach i ∈ [1, length(p)] such that s[i] = true do
7 L[P[i]]← L[P[i]] ∪ {t}

8 return L

y = 0 will be similar, as the cases x = 0 and y = 0 are symmetric, and will hence result in

the exact same entropy and are not shown here. Thus, the entropy obtained by splitting on

the predicate x < y is the minimum among the choices, and will therefore yield the highest

information gain. So, the decision tree learning algorithm splits according to the predicate

x < y at the first level. Once this has been done, notice that the sample set P1 that results

from the split, can be labeled consistently by the label x, which results in the specification

being satisfied at all the valuations in the set. Similarly, the label y can be chosen for the set P2.

Thus, the decision tree learned for this example is as shown in Figure 6.1. From this tree, the

expression ite(x < y,y, x) can easily be deduced, which is a correct solution for this example.

6.3.3 Putting it all Together

Algorithm 6.3 describes how the solver that combines enumeration and unification, which we

dub eusolver, computes a set of terms that when taken together could form a complete

solution. The loop at line 1 of Algorithm 6.3, continues enumerating terms from the term

95



Algorithm 6.3: TermSolve: Algorithm to find a set of expressions which together satisfy
the specification for a given set of points

Input :A canonicalized SyGuS specification ψcan , ∃ f ∀ a, x ϕcan[f, x, a].
A list of n valuations of variables in x ∪ a, called P.
A stateful enumerator enumerator(GT ) for terms.

Output : A map L from P to non-empty sets of terms from GT .
Data : The partially computed output, L, which initially maps everything to ∅.

1 while there exists p ∈ P, such that L(p) ≡ ∅ do
2 L← ExpandTermSet(ψcan, P, enumerator(GT ), L)

3 return L

grammar GT until it finds a set of terms such that for every valuation p ∈ P there exists some

term t in L such that the term t satisfies the specification ϕcan when evaluated at the point p.

Algorithm 6.2 expands the mapping L to include more terms. This is tantamount to expanding

the set of terms that are allowed to be a part of a solution. As an optimization, if two terms t1

and t2 satisfy the specification on the same subset of points in P, then we only retain one of

them in the map L, in Algorithm 6.2. The number KT referred to in Algorithm 6.2 is a tunable

parameter, which was set to eight in all our experiments. Finally, Algorithm 6.3 returns the

map it has built up once the stopping condition described earlier has been reached.

Given such a map L, the algorithm UnifyTerms, which is shown in Algorithm 6.4 is then

used to unify these terms using conditionals, where the predicates for the conditional are

Boolean combinations of atoms drawn from GP. The algorithm works by enumerating sets

of the KP atoms from GT in each iteration. Here KP is a parameter; in all our experiments,

this was set to a value of eight. Once this set of atoms has been enumerated, the algorithm

computes the points p ∈ P, where each atom in this set evaluates to true, and stores it in the

map attrmap. An optimization similar to the one described in TermSolve is applied here:

if two atoms evaluate identically on all the points in P, then only one of them is retained.

Once the map attrmap has been computed for the current batch of atoms, the algorithm then

attempts to learn a decision tree. If this step fails, there could be two reasons for the failure:

1. The current set of atoms are sufficient to learn a correct classifier, in which case the

algorithm would need to enumerate more atoms.

2. The current set of terms under consideration require that we learn a classifier to separate

two points p1 ∈ P and p2 ∈ P. This could happen because two distinct terms, say t1

and t2, satisfy the specification at p1 and p2, respectively, and no other terms satisfy the

96



Algorithm 6.4: UnifyTerms: Attempt to combine sub-expressions

Input :A canonicalized SyGuS specification ψcan , ∃ f ∀ a, x ϕcan[f, x, a].
A list of n valuations of variables in x ∪ a, called P.
A map L from P to non-empty sets of terms from GT .
A stateful enumerator enumerator(GP) for atoms.
A stateful enumerator enumerator(GT ) for terms.

Output : Either a solution e for ψcan, or a valuation p of variables in x ∪ a.
Data : A map attrmap, from predicates in GP to a bit vector of length length(P).

1 do
2 aps← the next KP atomic predicates from enumerator(GP)
3 foreach ap ∈ aps do
4 sig← 〈ap[p] for p in P〉
5 if there exists ap ′ 6= ap, such that attrmap[ap ′] ≡ sig then
6 continue

7 attrmap[ap]← sig

8 dtree← Learn-DT(P, attrmap, L)
9 if dtree 6= ⊥ then

10 e← expression constructed from dtree
11 if verify(e, ψcan) then
12 return e

13 else
14 return a valuation σ of variables in x ∪ a which form a verification counterexample

15 else
16 L← ExpandTermSet(ψcan, P, enumerator(GT ), L)

17 while (dtree = ⊥)

specification at these two points. Now, it could be impossible to separate p1 and p2, based

on the predicates defined by GP. However, a solution might still be possible if there exists

a term t ′ ∈ GT , such that it satisfies the specification at both p1 and p2. In this situation,

the algorithm would need to enumerate more terms.

It is not obvious how one can accurately determine which of these two reasons caused the

attempt to learn a decision tree to fail. Given this difficulty, Algorithm 6.4 conservatively

expands the set of terms currently in consideration (at Line 16 in Algorithm 6.4), as well as the

set of atoms used to construct a decision tree (at Line 2, at the beginning of the next iteration

of the loop), whenever an attempt to learn a decision tree fails. Note that attrmap retains its

value across iterations of the outermost loop in Algorithm 6.4. On the other hand, if it was

possible to learn a decision tree, the algorithm extracts an expression from the learned decision

tree. This can be achieved in multiple ways; one possible way is to walk down every path

from the root to the leaves, gathering the atoms that internal nodes are labeled with, together

97



Algorithm 6.5: eusolve: Solve for a SyGuS specification ψcan

Input :A canonicalized SyGuS specification ψcan , ∃ f ∀ a, x ϕcan[f, x, a].
A grammar for terms GT .
A grammar for atoms GP.

Output :A solution e for the SyGuS specification ψcan

Data :A list of valuations P of variables in x ∪ a, initially empty.
enumerator(GT ), a systematic, stateful enumerator which enumerates terms from GT .
enumerator(GP), a systematic, stateful enumerator which enumerates atoms from GP.

1 while true do
2 if length(P) = 0 then
3 e← the first term from enumerator(GT )
4 if verify(e, ψcan) then
5 return e

6 else
7 σ← a valuation of variables in x ∪ a which forms a verification counterexample
8 append σ to P
9 continue

10 L← TermSolve(ψcan, P, enumerator(GT ))
11 solorcex← UnifyTerms(ψcan, P, L, enumerator(GP), enumerator(GT ))
12 if solorcex is an expression then
13 return solorcex

14 else
15 append solorcex to P
16 continue

with their polarity. When a leaf node is reached, the label at the leaf node provides the term,

and the conjunction of the accumulated atoms forms the condition under which the term can

be used. Once such an expression e has been built, the algorithm attempts to verify that e

is a solution to the SyGuS specification ψcan. The verification step is performed by posing an

appropriate query to an SMT solver. We use the SMT solver Z3 [dMB08] in our implementation.

If this verification succeeds, it returns e. Otherwise, it returns a counterexample to verification,

which is a valuation of the variables in x ∪ a, such that the expression e does not satisfy the

specification on that valuation.

Finally, the algorithm eusolve, shown as Algorithm 6.5, shows how the TermSolve

and UnifyTerms algorithms are composed to form a complete SyGuS solver. The algorithm

maintains a list of valuations P, which are built up from counterexamples returned by the

algorithm UnifyTerms. It repeatedly calls the algorithm TermSolve, followed by the algorithm

UnifyTerms, augmenting the list of valuations P in each iteration, until UnifyTerms returns

a solution that has been verified to be a correct solution to the SyGuS specification ψcan.

98



Correctness of the Algorithm eusolve

We now argue that Algorithm 6.5 is a semi-decision procedure, i.e., if there exists a solution in

the form of a conditional expression in the grammars defined by GT and GP, the algorithm

terminates with a correct solution. If the grammars GT and GP do not admit a solution in

the form of a conditional expression, then Algorithm 6.5 can run forever. We now formalize

and prove these guarantees, that are provided by Algorithm 6.5, eusolve, in the following

theorem.

Theorem 2. Given a plainly separable SyGuS specificationψ, a term grammarGT and a predicate

grammar GP, if there exists a solution of the following form:

if (c0) then t0

else if (c1) then t1
...

else if (cn−1) then tn−1

else termn

where c0, c1, . . . , cn−1 are Boolean combinations of atomic predicates drawn from GP and

t0, t1, . . . , tn are drawn from GP, then Algorithm 6.5, eusolve terminates and returns a

correct solution.

Proof. We first note that it is sufficient to consider conjunctions of literals, where a literal is

either an atomic predicate or its negation in the conditionals {ci}. Suppose that the grammars

admit a solution of the form:

if (l0 ∨ l1) then t0

else t1

then, by leveraging that an if-then-else construct is essentially disjunctive, it also admits the

following equivalent solution:

if (l0) then t0

else if (l1) then t0

else t1

So, without loss of generality, we will assume that a correct solution admitted by the grammars

GT and GP has the following form:

99



if (l0,0 ∧ l0,1 ∧ · · ·∧ l0,k0) then t0

else if (l1,0 ∧ l1,1 ∧ · · ·∧ l1,k1) then t1
...

else if (ln−1,0 ∧ ln−1,1 ∧ · · ·∧ ln−1,kn−1) then tn−1

else tn

where each li,j is either an atomic predicate drawn from GP or its negation, and each ti

is a term drawn from GT . Let us define the set Terms ≡ {t0, t1, . . . , tn}, as well as the set

Lits ≡ {l0,0, . . . , l0,k0 , . . . , ln−1,0, . . . , ln−1,kn−1}. Note that both the sets Terms and Lits are

finite. We now make the following observations:

1. For any given set of terms and literals, there are only finitely many syntactically distinct

conditional expressions that can be formed using the available terms and literals.

2. The set of distinct decision trees over a finite set of terms and literals, and given a finite set

of samples, is also finite.

3. We can map every decision tree over a finite set of terms and literals, which classifies a finite

set of samples, to a syntactically unique conditional expression. The number of terms in

such a conditional expression is equal to the number of leaves in the decision tree, and the

condition on each branch is the conjunction of literals along the path to the corresponding

leaf (term).

4. Algorithm 6.5 makes progress: If the verification of a particular expression fails — either

in Algorithm 6.5 or in Algorithm 6.4 — then that particular expression will never be

presented to the SMT solver for verification at any subsequent point during the execution

of the algorithm. To see that this is true, observe that Algorithm 6.1 always returns a

decision tree which correctly classifies the sample set, or reports that no decision tree

exists. Further Algorithm 6.1 is sound and complete, i.e., it always returns a decision tree

which correctly classifies the sample set if one exists. A verification attempt only occurs

when a decision tree can be learned. Now, suppose that a particular verification attempt

resulted in the candidate expression being proved incorrect. A valuation that demonstrates

the incorrectness of the candidate must have been added to the list P maintained by

Algorithm 6.5. Now, if the same decision tree was ever returned by Algorithm 6.1, then

that decision tree will incorrectly classify this newly added point (valuation). This is in

contradiction with the fact that Algorithm 6.1 always returns a correct classifier for a given

sample set.

100



Based on these observations, we now only need to prove that a sufficient set of terms

and atomic predicates will eventually be enumerated by the Algorithm 6.3 and Algorithm 6.4

respectively. This follows from the observations of finiteness and progress made above, and the

fact that the sets defined by the grammars GT and GP are recursively enumerable. Thus, at

some point it must be the case that:

⋃
p∈P

L(p) ⊇ Terms (6.9)

where L is the mapping returned by the Algorithm 6.3, TermSolve. In other words, a sufficient

set of terms will eventually be enumerated by the algorithm. We can use a similar argument

to prove that the algorithm also eventually enumerates a sufficient set of atomic predicates

corresponding to the set of literals Lits. Formally it must be the case that at some point during

the execution of Algorithm 6.4, it must be the case that:

⋃
ap∈aps

{ap,¬ap} ⊇ Lits (6.10)

where aps is the set of atomic predicates generated during the execution of Algorithm 6.4.

We now argue that once the conditions described by the formulas 6.9 and 6.10 are met, the

mapping L and the set aps in Algorithm 6.3 and Algorithm 6.4 respectively, remain unchanged

in all future invocations.

To see why this is true, recall that we made the assumption that there exists a solution

involving only the terms in the set Terms and the literals in the set Lits. This means that

for any set of concrete valuations P (maintained by Algorithm 6.5), there must be some

term t ∈ Terms that satisfies the specification for that valuation. So based on its termination

condition, Algorithm 6.3 will never enumerate a larger set of terms. Furthermore, for any set

of valuations P, there must also exist a decision tree that correctly classifies the valuations

using the predicates as splitting attributes and the terms as labels. So, Algorithm 6.4 will never

need to enumerate a larger set of predicates — because Algorithm 6.1 will always return some

decision tree.

Based on the observations of finiteness and progress that we have made earlier, we know

that there are only a finite number of expressions that can be formed using the set of terms in

the (now unchanging) map L, and the (again, now unchanging) set of atomic predicates aps.

101



1 (set-logic BV)

2 (define-fun shr1 ((x (BitVec 64))) (BitVec 64) (bvlshr x #x0000000000000001))
3 (define-fun shr4 ((x (BitVec 64))) (BitVec 64) (bvlshr x #x0000000000000004))
4 (define-fun shr16 ((x (BitVec 64))) (BitVec 64) (bvlshr x #x0000000000000010))
5 (define-fun shl1 ((x (BitVec 64))) (BitVec 64) (bvshl x #x0000000000000001))
6 (define-fun if0 ((x (BitVec 64)) (y (BitVec 64)) (z (BitVec 64))) (BitVec 64)
7 (ite (= x #x0000000000000001) y z))

8 (synth-fun f ((x (BitVec 64))) (BitVec 64)
9 ((Start (BitVec 64)

10 (#x0000000000000000 #x0000000000000001 x
11 (bvnot Start) (shl1 Start) (shr1 Start)
12 (shr4 Start) (shr16 Start) (bvand Start Start)
13 (bvor Start Start) (bvxor Start Start)
14 (bvadd Start Start) (if0 Start Start Start)))))

15 (constraint (= (f #x85c12c65236e72be) #x85c1ade52f6f73fe))
16 (constraint (= (f #xe1207ed6c7320aa4) #x70903f6b63990553))
17 .
18 .
19 .WWW

20 (check-synth)

Figure 6.2: Anatomy of an ICFP Benchmark

The progress property ensures that the same expression is never submitted for a verification

attempt more than once. Thus, we can conclude that eventually, Algorithm 6.5 will attempt to

verify the correct solution and return it.

6.3.4 Evaluation of eusolver
We built a prototype version of eusolver using the Z3 SMT solver [dMB08] for verification.

The prototype implemented the expression enumeration parts and the high level algorithm in

Python, whereas the decision tree learning algorithms as well as some performance critical bit

vector manipulation routines were implemented in C++. Our experiments were conducted on

an Intel Core i7 processor running at 2GHz. All experiments were run with a time out 1800

seconds per benchmark. We evaluated eusolver on the following subset of the SyGuS main

track benchmarks:

• Integer Arithmetic: We evaluated eusolver on a set of benchmarks which compute

the maximum of a some number of arguments. The actual number of arguments can be

102



parameterized. We were able to scale reasonably well on this set of benchmarks, as the

value for the parameter was increased.

• ICFP Benchmarks: As mentioned earlier, the specifications for these 50 benchmarks were

in the form of a number of input-output examples which describe the output of the function

to be synthesized for various inputs. No other solver has been able to solve more than a

handful of these benchmarks, to the best of our knowledge. eusolver was able to solve

more than 80% of the benchmarks (42 out of 50) with a 30 minute time limit for each

benchmark.

We did not evaluate eusolver on the other tracks, because the solutions to these tracks

did not consist of large if-then-else expressions. Also, the original esolver could solve most

of these benchmarks. For a more universal solver, one could imagine running a portfolio solver

with the original esolver algorithm running on one thread, with the eusolver algorithm

running on another thread. Such a solver would be able to solve a sizeable fraction of the SyGuS

benchmark suite as it stands today. Table 6.4 summarizes the results of running eusolver

on the ICFP benchmarks. In contrast, CVC4, the winner of 2015 SyGuS contest could only

solve one ICFP benchmarks when syntactic restrictions were applied, and 43, when syntactic

restrictions were not applied. We note that all our solutions are within the syntax specified by

the benchmarks. Lastly, we did not observe the solver memory usage using exceeding 100 MB

for any benchmark. As a final comparison eusolver was able to produce syntactically valid

solutions for 42 out of 50 ICFP benchmarks in a total of 7630 seconds, whereas, the CVC4

solver could solve 43 out of the 50 benchmarks in 3400 seconds [RDK+15], but the solutions

were not syntactically valid and used arbitrary function symbols form the SMTLIB theory of

fixed-size bit-vectors.

To provide some context to the reader, Figure 6.2 shows a typical ICFP benchmark. Note

that the benchmark has been reproduced almost verbatim from the actual benchmark used in

the SyGuS competition. The only changes we have made are to elide a large set of input-output

constraints from line 17 – 20, and some whitespace and adjustments, for better readability.

Further, we emphasize that the syntactic restrictions that we have discussed earlier are an

integral part of the benchmark. The first line declares that the logic of fixed-size bit-vectors

is to be used. Lines 2 – 5 declare the macros named shr1, shr4, shr16, shl1, each of which

takes a 64-bit bitvector as an argument and returns another 64-bit bitvector, shifted by right or

left by the appropriate constant. Lastly, lines 6 and 7 declare a macro named if0, which is a

103



Benchmark Time (s) Exp. size |P|

icfp_103_10 38.9 55 9

icfp_104_10 1.0 24 3

icfp_105_100 2.3 23 4

icfp_105_1000 24.5 22 4

icfp_113_1000 114.9 11 2

icfp_114_100 665 26 3

icfp_118_10 10.1 54 6

icfp_118_100 51.4 49 4

icfp_125_10 19.7 28 7

icfp_134_1000 TO – –

icfp_135_100 158 13 2

icfp_139_10 3.3 10 2

icfp_143_1000 TO – –

icfp_144_100 1525 39 11

icfp_144_1000 TO – –

icfp_147_1000 TO – –

icfp_14_1000 TO – –

icfp_150_10 4.7 52 7

icfp_21_1000 1069 28 5

icfp_25_1000 125 29 5

icfp_28_10 0.17 2 1

icfp_30_10 40.4 14 4

icfp_32_10 25.9 14 2

icfp_38_10 13.1 27 5

icfp_39_100 40.7 12 2

Benchmark Time (s) Exp. size |P|

icfp_45_10 0.48 9 2

icfp_45_1000 32.2 9 2

icfp_51_10 4.62 11 2

icfp_54_1000 69.8 11 2

icfp_56_1000 TO – –

icfp_5_1000 60.5 32 4

icfp_64_10 46.1 33 4

icfp_68_1000 37.6 46 7

icfp_69_10 1.82 11 4

icfp_72_10 47.9 13 2

icfp_73_10 1.15 24 3

icfp_7_10 1.61 24 5

icfp_7_1000 66.2 30 9

icfp_81_1000 1318 37 7

icfp_82_10 17.1 32 7

icfp_82_100 31.7 30 10

icfp_87_10 13.1 31 5

icfp_93_1000 174 29 5

icfp_94_100 2.58 24 4

icfp_94_1000 30.1 24 4

icfp_95_100 829 47 35

icfp_96_10 35.1 48 8

icfp_96_1000 TO – –

icfp_99_100 876 25 4

icfp_9_1000 TO – –

Table 6.4: Experimental Results for eusolver on the ICFP benchmarks. The column labeled
“Time” indicates the time taken to arrive at a solution. The column labeled “Exp. size” indicates
the size of the computed expression, and the column labeled |P| indicates the number of
counterexamples that were considered by the algorithm before arriving at a correct solution.
TO indicates a timeout.

restricted form of conditional which takes three 64-bit bitvectors as arguments and returns

the second argument if the first argument is equal to the bitvector constant “1”, otherwise

returns the third argument. Line 8 declares a function f which is to be synthesized, which

takes in one 64-bit bitvector as an argument, which is referred to as x — this is the formal

parameter name — and returns a 64-bit bitvector. Lines 9 – 14 describe the grammar for the

interpretation of f. Line 9 declares a non-terminal named Start which expands to a 64-bit

104



Benchmark eusolver eusolver eusolver CVC4 STUN
Time (s) Exp. Size |P| Time (s) Time (s)

max2 0.05 6 2 0.01 0.094

max3 0.16 30 15 0.02 0.087

max4 0.56 94 43 0.03 0.097

max5 3.18 254 160 0.05 0.179

max6 17.3 634 544 0.1 0.167

max7 131.7 1510 2080 0.3 0.230

max8 1296 3490 7734 1.6 0.267

max9 TO – – 8.9 0.277

max10 TO – – 81.5 0.333

max11 TO – – ND 0.371

max12 TO – – ND 0.441

max13 TO – – ND 0.554

max14 TO – – ND 0.597

max15 TO – – ND 0.675

Table 6.5: Experimental Results for eusolver on the max benchmarks. The first four columns
have the same meaning as in Table 6.4. The next two columns show the times taken by the
CVC4 solver [RDK+15] and the STUN solver [ACR15] on the same benchmarks. TO indicates
a time-out and ND indicates that the data was not available.

bitvector value. Line 10 lists three expansions: The constants “0”, “1”, or the formal parameter

x. Lines 11 – 14 describe other, recursive expansions, involving standard functions like bvnot,

bvadd, etc., from the SMTLIB theory of fixed-size bitvectors, as well as macros defined in lines

2 – 7. The constraints on the behavior of f are described from line 16 onwards. Each constraint

is an input-output example, which constrains the result of f applied to a constant value, to

another constant value.

All the 50 ICFP benchmarks are similar in structure to the one shown in Figure 6.2, i.e., they

all use the same set of macros and the same grammar. However, the constraints themselves

differ to describe different functions f. These constraints are obviously underspecified; they do

not completely describe the behavior of f on all inputs. To successfully solve such constraints, a

SyGuS solver would need to perform a non-trivial amount of generalization. As we demonstrate,

eusolver is able to generalize well from these constraints and successfully solve a large

fraction of the ICFP benchmarks within a reasonable amount of time.

Table 6.5 demonstrates the performance of eusolver on the parametric max benchmark

from the SyGuS suite. On this set of benchmarks, eusolver performs better than the original

105



esolver, which times out on all benchmarks beyond max3. However, it is not as performant

as the CVC4 and the STUN solvers on these benchmarks. Our investigations reveal that a

majority of the time is spent in decision tree learning on the larger max benchmarks. Indeed,

the number of counterexamples points added shown in the column labeled |P| in Table 6.5

seems to grow very rapidly with larger instantiations of the max benchmarks. The reasons for

why such a large number of counterexamples are considered by the algorithm are unclear and

warrant a closer investigation. In contrast, the CVC4 and STUN solvers show a much smaller

slowdown on larger instances of the max benchmark.

A Note on Expression Sizes

The expression sizes reported in Tables 6.4 and 6.5 were for the expressions obtained by the

simplistic strategy to convert a decision tree into an expression, which we have described

earlier in Section 6.3.3. Such a strategy returns an expression with a flat conditional structure,

i.e., with only a top level case split and no nested conditionals. In some cases, it is possible

that by allowing nested conditionals and applying slightly more sophisticated simplification

steps as post-processing, a smaller sized expression can be obtained. We did not explore such

simplifications and post-processing steps.

To conclude this chapter, we have presented a generic enumeration based algorithm to

solve separable SyGuS instances, where the grammar can be easily separated into a grammar

for atomic predicates and a grammar for terms. We have demonstrated the efficacy of the new

algorithm in solving a large fraction of the ICFP benchmarks in the SyGuS benchmark suite,

while respecting all the syntactic restrictions. To the best of our knowledge, this is algorithm

is the first to be able to successfully solve such a large fraction of the ICFP benchmarks. This

chapter concludes the digression towards the SyGuS problem. We now turn our attention back

to the problem of distributed protocol synthesis in the subsequent chapters of this dissertation.

106



7
Synthesis of Finite-state Protocols

from Scenarios and Specifications

We now turn our attention back to the protocol completion problem. As mentioned in Sec-

tion 4.4, the transit tool has some limitations: (1) transit cannot synthesize transitions

which are missing from the input, (2) transit does not handle liveness properties, and (3)

transit requires the programmer to be in the loop. We seek to at least partially address these

limitations with the work described in this section. We develop a fully automatic approach to

synthesize protocols which are described using scenarios over finite-state machines — i.e., no

state variables — given a set of safety and liveness requirements that the completed protocol is

expected to satisfy. This chapter is based on the work originally published in [AMR+14].

7.1 Overview of Finite-state Protocol Synthesis

Figure 7.1 provides a high-level overview of the process of synthesizing finite-state protocols

from scenarios as an instantiation of the algorithmic scheme shown in Figure 3.2. The program-

mer provides a set of scenarios — which are essentially execution traces of the protocol under

construction, and will be described in detail in subsequent sections — and the protocol skeleton.

The protocol skeleton lists the state machines and state machine sketches that comprise the

protocol, their input and output alphabets, and the set of locations L for each state machine

(in the case of uncontrollable environment state machines) or state machine sketch (in the

case of state machines that are required to be synthesized). Note that the state machines are

required to be finite state, i.e., they do not have any state variables and messages do not have

payloads, as defined in Chapter 3. As in Chapter 3, we will refer to finite state machines and

107



Scenarios and
Protocol Skeleton

1

Build esm-sks
4

Generate I such
that I |= ϕ

5

Instantiate
Protocol

6

Check
correctness

7

Correct
Protocol

Safety and
liveness monitors

3

Analyze error trace
and augment ϕ with
additional constraints

8

Correct?

Incorrect?
Error Trace

ϕ augmented with
additional constraints

Figure 7.1: Algorithm for Synthesizing Finite-state Protocols from Scenarios

finite state machine sketches as fsms and fsm-sks respectively. The tool builds the fsm-sk

of the full protocol using these scenarios. Given that the state machines here are finite-state

and have no state variables, the interpretation I that is to be generated is thus a set of Boolean

valued functions of the form g : L× Σ ∪ {ε}× L→ B, which determines whether a transition

to a location l ′ ∈ L, emitting (receiving) a messagem ∈ Σ ∪ {ε} is allowed when the esm-sk

is in location l ∈ L, where L is the set of locations of the esm-sk under consideration. We use

an Integer Linear Program (ILP) solver to generate this interpretation. The set of constraints ϕ

can therefore be considered an integer linear program. The resulting protocol is then checked

for correctness against the safety and liveness properties specified by the programmer. If

the protocol is correct, then the algorithm terminates. Otherwise, the protocol automatically

analyzes an error trace and augments the ILP ϕ with additional constraints which rule out at

least this erroneous execution from future solutions.

We describe the two key parts of this algorithm in rest of this section. Section 7.2 introduces

the notion of a scenario and describes how a set of scenarios is translated into a set of fsm-sks

and sets up the synthesis problem as one of completing this set of fsm-sks. Section 7.3

describes a CEGIS based algorithm to solve the completion problem, and how error traces are

analyzed to augment the ILP ϕ with additional constraints. Finally, Section 7.4 presents our

experience on using this methodology to specify the alternating bit protocol [KR09], a cache

108



before
sending 0send

Sender Receiver

before
recv. 0

before
recv. 0

p0

deliver
a0

before
sending 1send before

recv. 1p1

deliver
a1

send
p0

deliver
a0

before
sending 0

(a) Scenario 1

send

Sender Receiver

p0

deliver
a0

send
p1

tout
p1

deliver
a1

send
p0

deliver
a0

(b) Scenario 2

Figure 7.2: The first two scenarios for the Alternating-bit Protocol. The arrows colored red
indicate the events involving the environment. The first scenario describes the normal operation
of the protocol without any timeouts or lost messages. The second scenario describes the
behavior when a packet loss occurs.

coherence protocol and a protocol for solving the distributed consensus problem using atomic

registers.

7.2 Scenarios to fsm-sks
A scenario is a sample execution trace of a protocol, which shows the exchange of messages that

occur in the execution among the state machines that make up the protocol, with the passage

of time. Abstractly, we can view a scenario as describing partial order on the events (sending

and receiving messages) that occur across state machines in an execution. We will illustrate

the use and semantics of scenarios using the example scenarios that describe the behavior of

the Alternating-bit Protocol (ABP), which is a fundamental protocol in computer networking,

109



Sender Receiver
send

p0

deliver
a0

send
p1

a1

tout
p1

deliver

a1

send
p0

deliver
a0

(a) Scenario 3

Sender Receiver
send

p0

deliver
a0

send
p1

deliver
a1

send
p0

deliver
a0

tout

(b) Scenario 4

Figure 7.3: The two remaining scenarios for the Alternating-bit Protocol. Again, the arrows
colored red indicate events involving the environment. The event labeled tout indicates a
timeout event. The third scenario depicts the behavior when an acknowledgment is lost, and
the final scenario describes the behavior on a premature timeout or a packet duplication

and is used for the reliable transmission of data across a channel which is unreliable. In this

dissertation, we assume that an unreliable channel is capable of losing packets or messages, as

well as duplicating them.

The Alternating-bit protocol consists of the state machines named Sender and Receiver,

with a pair of ordered, duplicating and lossy channels between them: the Forward channel,

relaying data packets (labeled p0 and p1) from the Sender to the Receiver, and the Backward

channel, relaying acknowledgment packets (labeled a0 and a1 corresponding to the data

packets p0 and p1) from the Receiver to the Sender. The goal of the protocol is to ensure

reliable packet delivery despite the possibility that the channels may non-deterministically drop

packets or duplicate them. This requirement is expressed by the liveness monitors provided by

the programmer, which are not shown here.

110



We will use the scenarios shown in Figures 7.2 and 7.3 to describe the behavior of the

ABP protocol. They come from a textbook on computer networking [KR09]. The first scenario

describes the behavior of the protocol when no packets or acknowledgments are lost or

duplicated. The second and the third scenarios correspond to the expected behaviors of the

protocol in the event of the loss of a packet and in the event of the loss of an acknowledgment

respectively. Finally, the fourth scenario describes the behavior of ABP on premature timeouts

and/or packet duplication. Note that scenarios may be annotated with labels. This is shown in

Figure 7.2(a), where the labels “before sending 0” and “before recv. 0” are used to indicate that

the states of the Sender and the Receiver automata at two different points of the scenario are

the same. These are used in the construction of automata from the scenarios as we will describe

shortly. Labels can also be used to indicate that two states of an automaton are the same even

across different scenarios. Furthermore, labels are essential for specifying recurring behaviors

in scenarios and the structure of the incomplete state machine constructed depends on the

number and positions of labels used. Also, note that these scenarios omit the environment

state machines for simplicity. In particular the state machines corresponding to the channels

are omitted, however, we will use a primed version of a message when referencing it on the

state machine that receives it.

The idea for transforming scenarios into state machines is simple. First, for every “lane” in

a given scenario, we identify the corresponding (complete or incomplete) state machine in the

overall system. For example, in each scenario shown in Figures 7.2 and 7.3, the left-most lane

corresponds to ABP Sender and the right-most lane to ABP Receiver.

Second, for every state machine P in the protocol whose behavior needs to be synthesized,

we generate an incomplete state machine (or fsm-sk) AP as follows. For every message history

ρ (ρ is a finite sequence of messages received or sent by the state machine) specified in some

scenario in the lane for P, we create a location sρ in AP. If ρ ′ = ρ · x is an extension of history

ρ by one message x, then there is a transition sρ x−→ sρ ′ in AP. At this point, we check that the

inputs and outputs of AP are included in the interface of P in the protocol skeleton and that

AP is deterministic.

Third, we merge states which have the same label. Merging occurs for states of a single

scenario as well as across multiple ones if the same label is used in different scenarios. If

consistent labels are given to the initial and final positions in all lanes of the scenarios the

resulting incomplete automata could have cyclic behavior.

111



q1 q2 q5

q3 q4

before
sending 0

before
sending 1

send? p0! a ′1? a ′0?

a ′0?

timeout? a ′0?p0!

send?

Figure 7.4: fsm-sk for the ABP Sender from all scenarios of Figures 7.2 and 7.3 and their
symmetric versions after merging labeled states. (Only one half of the fsm-sk is shown, the
rest is the symmetric case for packet p1)

Finally, symmetric versions of scenarios are inferred from the given set of scenarios. For

example, all the ABP scenarios express valid behaviors if p0 and a0 messages are consistently

replaced with p1 and a1 messages respectively and vice-versa. Thus, the framework allows for

scenarios to be characterized as symmetric.

As an example, the resulting fsm-sk for ABP Sender after applying the steps described

above, given the scenarios shown in Figures 7.2 and 7.3 is shown in Figure 7.4. Note that the

primed messages correspond to the unprimed messages of the same name which have been

transmitted through a channel. Essentially, if a channel state machine receives a message p,

then it outputs a message p ′ on its other end-point. This is needed because the output alphabets

of the state machines in a protocol are required to be pairwise disjoint for the composition to

be defined, as explained in Section 2.2. Once we have transformed the input scenarios into

fsm-sks, the problem is now one of protocol completion, as formalized in Section 2.3. The

completion in this case, is to add appropriate transitions the fsm-sks, which we now describe.

7.3 Completion of fsm-sks

Given a set of incomplete finite-state automata or finite-state esm-sks, we associate a Boolean

variable with every candidate transition that can be added to the individual incomplete au-

tomata. In other words, For every incomplete automaton A, and for every triple 〈l,m, l ′〉,

where l, l ′ ∈ L, the set of locations ofA,m ∈ I∪O∪ {ε}, I andO are the input output alphabets

of A, we associate a Boolean variable tlml ′ , which indicates whether a transition from l to

l ′ is permitted while receiving (transmitting) the messagem. The completion task is to find

a valuation for these Boolean variables, such that the resulting protocol (which is formed by

composing the completed esm-sks with the environment automata) is (1) deterministic, (2)

112



deadlock-free, and (3) satisfies the safety and liveness monitors specified by the programmer. In

the remainder of this section we will use the names ti to refer both to candidate transitions that

can be added to the automata as well as the Boolean variables corresponding to the transitions.

7.3.1 State Coverage

Note that the number of states in the incomplete automata are influenced by the scenarios

used to construct them as well as the labels used in the scenarios. We have just set up the

synthesis problem as a completion problem which only involves adding transitions to incomplete

automata. As such, for the synthesis step to be successful, it is necessary that there exist a

correct implementation of the protocol such that (1) It uses only the set of locations represented

in the scenarios, and (2) Every provided scenario is an actual execution of such a correct

implementation. If this is the case, then we say that the scenarios provide adequate state

coverage for the synthesis to succeed.

7.3.2 Analysis of Counterexample Traces

To solve the finite-state protocol completion problem, we maintain a set of constraints ϕ on the

transition variables ti defined in Section 7.2. ϕ is initialized with determinism and deadlock

constraints. The first enforce that the protocol automata are deterministic. For the second, we

explore the reachable state space of the product of the environment and incomplete automata;

for every deadlocked state, we add constraints that guarantee that at least one transition will

be enabled out of that state.

The algorithm then works iteratively as follows. At the beginning of every iteration, a

constraint solver — an ILP solver in our implementation — produces an assignment to the

transition variables such the assignment satisfies the constraints ϕ. If the constraints are

unsatisfiable, the algorithm concludes that no solution is possible and terminates. Otherwise,

we translate the assignment to a set of transitions T , such that for every transition variable that

the assignment sets to true, the corresponding transition is added to the appropriate incomplete

state machine. Let the current set of transitions added, across all incomplete state machines be

T = {t1, . . . , tn}. We instantiate the protocol with transitions from T added to the appropriate

incomplete state machines, form their product with the environment automata, and check for

the absence of deadlocks, safety, and liveness violations using a model checker. The following

cases are possible:

113



1. No violations are found. In this case, T is a correct completion, and the algorithm terminates.

2. A safety violation is found. This case means that the candidate solution T is incorrect.

Moreover, any candidate T ′ obtained by adding extra transitions to T , i.e., T ′ ⊇ T , will

also be incorrect, because adding extra local transitions can only add, but not remove,

global transitions. This in turn implies that any reachable error state with T will also be a

reachable error state with T ′, so any safety violation with T will also be a safety violation

with T ′. To enforce that no super-set of T is included in any future candidate set, we add

the formula ¬(t1 ∧ t2 ∧ · · ·∧ tn) to the constraint set.

3. A liveness violation is found. This case also means that the candidate solution T is incorrect.

A liveness violation, corresponds to a fair infinite accepting run, represented by a reachable

cycle, such that the run causes a liveness monitor to reach an accepting state infinitely

often. Although adding more transitions cannot eliminate the cycle, it is possible that

additional transitions can render a fair run unfair: if a particular output o ∈ Of was not

enabled in the cycle, then adding local transitions can cause o to become enabled. Let

T ′ = {t ′1, . . . , t
′
m} be the set of transitions that, if added, would make the infinite run

unfair.11 We add as a constraint the formula ¬(t1 ∧ t2 ∧ · · ·∧ tn)∨ (t ′1 ∨ t
′
2 ∨ · · ·∨ t ′m).

The constraint guarantees that in all future candidate sets, the cycle will be unreachable,

broken, or not fair.

4. A deadlock state is found. In this case as well, T is incorrect, but could potentially be made

correct by adding more transitions. Let T ′ = {t ′1, . . . , t
′
m} be the set of candidate transitions

such that, if any transition in T ′ is added, a transition is enabled out of the deadlock state.

We add the constraint (t1 ∧ · · ·∧ tn)→ (t ′1 ∨ · · ·∨ t ′m).

In every iteration, either a correct completion is found or the search space is pruned. We

use an ILP solver to generate candidate sets from the constraints with an objective function

that minimizes the size of the candidate set. In that way, in each iteration, we examine the

smallest set of transitions that satisfies the constraints. This keeps the size of the product of

the automata small and allows for faster checking of the properties.

We employ the following heuristic to prune the search space faster. Assume that a candidate

set T = {t1, . . . , tn} is tested in an iteration of the algorithm and a safety violation is discovered.

As described so far, the algorithm will remove all super-sets of T from the search space by

11 For simplicity, we assume that process automata only communicate with environment automata. The constraint
for the general case is more complicated but conceptually similar.

114



adding the constraint ¬(t1 ∧ · · ·∧ tn). However, if the safety violation is reachable by using

only a subset of T , T ′′, then it is safe to also remove all super-sets of T ′′ from the search space.

Ideally, one would find all minimal subsets of T that alone can lead to a violation and remove

all super-sets of them. We approximate this by finding a minimal path to a safety violation

using breadth-first search. If the path contains a subset of the transitions in T , we remove all

super-sets of that subset from the search space.

7.3.3 Complexity of the fsm-sk Completion Problem

Theorem 3. The fsm-sk completion problem as defined at the beginning of Section 7.3 is

pspace-complete.

Proof. It is easy to see that the problem is in npspace. We can guess a completion; the space

of all possible completions for each fsm-sk is bounded by |L|2 × |Σ|, where L is the set of

locations and Σ is the message alphabet, and is thus polynomial in the size of the input.

Once a completion has been guess, checking for determinism can also be accomplished in

polynomial time. Finally, checking if the completion is correct is tantamount to ltl model

checking, which is known to be pspace-complete [SC85]. From Savitch’s theorem, we know

that npspace = pspace. Thus the fsm-sk completion problem is in pspace.

To prove hardness, we observe that in the special case where the fsm-sks in the protocol

have the following property: Adding any transition to any fsm-sk in the protocol results in the

fsm-sk being non-deterministic. In this case, there is only one possible “completion”: which

is to not add any additional transitions. Determining whether this sole completion is correct

is again tantamount to ltl model checking, which we know to be pspace-complete. This

completes the proof that the fsm-sk completion problem is pspace-complete.

7.4 Experimental Evaluation

In this section we evaluate the effectiveness of scenarios and our methodology for specifying

finite-state protocols. We use three benchmarks: the ABP protocol, a cache coherence protocol,

and a consensus protocol. We first check manually whether the corresponding scenarios

provide sufficient state coverage to be able to synthesize a correct implementation. We then

evaluate our synthesis algorithm on those benchmarks and investigate the effectiveness of

scenarios in reducing the empirical complexity of the automata completion problem. Lastly, we

discuss the interaction between the number of scenarios used to construct the initial incomplete

115



Benchmark time (s) # iterations # candidate transitions

ABP1 2.8 44 84

ABP2 9.9 87 172

ABP1-4 11.5 59 240

ABPcolored1 63.8 197 260

ABPcolored2 168.9 273 652

ABPcolored1-4 409.4 293 1012

VI-no-data 28.6 208 1170

VI 183.7 215 4538

Consensus-fail 0.3 5 264

Consensus-success 13.8 162 112

Consensus-success+1 21.4 163 216

Consensus-no-test-and-set 11.2 156 88

Table 7.1: Summary of experimental results for finite-state protocol synthesis from scenarios.

automata and the number of requirements that are necessary to synthesize a correct protocol.

A quantitative summary of our experiments can be found in Table 7.1. Each row corresponds to

a combination of benchmark and set of input scenarios used for that benchmark, column “time”

shows the total time that the synthesis algorithm took to find a correct completion, column “#

iterations” shows the number of iterations of the algorithm, i.e., the number of candidate sets

of transitions tested, and “# candidate transitions” is the total number of candidate transitions

for all process automata. Note that this last number, n, represents individual local transitions

and not number of candidate completions. The size of the space of all possible completions is

the number of subsets of the set of candidate transitions, i.e., 2n.

7.4.1 Alternating-bit Protocol

We have already described the working of this protocol using scenarios in Section 7.2. We use

different sets of input scenarios to create three versions of this benchmark. ABP1 used only the

first scenario shown in Figure 7.2 to construct the incomplete automata, ABP2 used only the

second scenario, while ABP1-4 used all four scenarios. Although the text-book presentation

uses four scenarios to describe the protocol, each of the these subsets of scenarios provided the

state coverage necessary for our algorithm to synthesize a correct and complete protocol.

116



Register1Process1
Test&Set
Register Register2 Process2

Prefer0
Set0

test-and-set-0

decide0

Prefer1

Set1

test-and-set-1

read0
decide0

Figure 7.5: Scenario for the consensus protocol.

We also constructed a variant of the Alternating-bit protocol that also models the ability

of the clients to send different payloads in the message packets. In the protocol described

in Section 7.2, the implicit assumption was that the payload was unique and irrelevant. In

the experiments ABPcolored1, ABPcolored2, and ABPcolored1-4, there are two “colors” of

messages that can be sent and received. The different “colors” essentially represent the distinct

values of data that the client of the sender automaton might wish to send to be delivered to

the corresponding client of the receiver automaton using the Alternating-bit protocol.

7.4.2 The VI Cache Coherence Protocol

We have briefly mentioned the VI cache coherence protocol in Section 4.4. Here, we consider

a finite-state version of the VI protocol, whose behavior is as described in Figure 1.3, in

Chapter 1. The finite-state version of the VI protocol considered here is very similar to the

version considered in Chapter 3.

We examine two variations of the VI protocol: one where there is a unique value for the

data, in which case the protocol reduces to a distributed locking protocol (VI-no-data), and one

where the data can take values 0 or 1, which captures the essence of the VI cache coherence

protocol (VI) and ensures that the resulting protocol actually satisfies the coherence invariant

as well, in addition to the liveness properties satisfied by the version of the protocol which

assumes a unique data value.

7.4.3 The Consensus Protocol

In this problem we specify a protocol that describes how two processes can reach consensus

on one value. Each process chooses initially a preferred value and then they coordinate using

117



shared memory to decide which of the two values to choose. The properties that the protocol

has to satisfy are agreement (the two decisions must be the same), validity (the common

decision must equal one of the preferred values), and wait-freedom (at any point, if only one

process makes progress it will be able to make a decision). It has been shown that wait-freedom

can be achieved only if a test-and-set register is used. The test-and-set register allows a process

to write a value to it and read its previous value, with both steps occurring as an atomic

operation.

Figure 7.5 shows the single scenario used for the consensus protocol. Both processes begin

by non-deterministically choosing a value, messages “Prefer0” and “Prefer1”, then write their

choices in shared registers, “Register1” and “Register2”, and then compete on setting the

common test-and-set register which is initialized with 0. In this case, Process1 succeeds, the

return value of the test-and-set operation is 0, and Process1 decides on its preferred value with

message “decide0”. On the other hand, Process2 fails, the test-and-set register returns 1, and

Process2 reads the value chosen by Process1, and decides on that with messages “read0” and

“decide0”.

We first attempt to synthesize the protocol starting from the incomplete automata con-

structed from the “success path”, i.e., only the lane for Process 1 in the scenario, and the “fail

path”, i.e., only the lane for Process 2 in the scenario. These two experiments correspond

to rows “Consensus-success” and “Consensus-fail” of the Table 7.1. Finally, we implement a

consensus protocol that does not use a test-and-set register, row “Consensus-no-test-and-set”.

Note that the protocol synthesized when a test-and-set register is not used is not wait-free.

7.4.4 Discussion

State Coverage

We observe that in all our experiments, except for “Consensus-success” and “Consensus-no-

test-and-set”, the states of the incomplete automata constructed by the scenarios cover all

states of the protocols. In the “Consensus-success” experiment, the incomplete automaton is

constructed using only the successful path of the protocol. A large part of the protocol’s logic is

missing from the input scenario, leaving the automaton with not enough states. The synthesis

algorithm terminates and thus proves that no successful completion is possible. When we add

an extra state in the incomplete automata without any edges to or from the rest of the states,

the synthesis algorithm returns a completion that uses the extra state to implement the missing

118



behavior. Row “Consensus-success+1” corresponds to that experiment. This seems to indicate

that apart from being a natural way to describe the behavior of distributed protocols, scenarios

also contain enough information to mechanically fill in any missing detail.

Generalization and inference of unspecified behaviors

In all cases where the given scenarios covered all the states of the desired implementation

the synthesis algorithm terminated with a correct completion. For the case of ABP with just

one scenario specified, the algorithm successfully performs the generalization required to

obtain a correct completion. The generalization performed is non-obvious: the correct protocol

behaviors on packet loss, loss of acknowledgments and message duplication are inferred, even

though the scenario does not describe what needs to happen in these situations. The incomplete

automata constructed from the scenario describe only the protocol behavior over loss-less

channels. The algorithms are guided solely by the liveness and safety specifications to infer the

correct behavior. In contrast, when all four scenarios are used, the scenarios already contain

information about the behavior of the protocol when a single packet loss or a single message

duplication occurs. The algorithm thus needs to only generalize this behavior to handle an

arbitrary number of losses and duplications.

The same is true about the generalizations made by the algorithm in the other benchmarks.

Specifically, in the case of VI, the synthesis algorithm correctly infers that in a complete protocol

write-back and invalidate messages should be treated in the same way both from the caches

and from the directory. Note that this behavior cannot be inferred by looking at caches and

directory independently: they both have to implement it for the result to be correct.

Interplay between scenarios and requirements

We observed that when fewer scenarios were used we needed to specify more properties

— some of which were non-obvious — so that the algorithms could converge to a correct

completion. For instance, when only one scenario was specified, we needed to include the

liveness property that every deliver message was eventually followed by a send message. Owing

to the structure of the incomplete automata, this property was not necessary to obtain a correct

completion when all four scenarios were specified. Another property which was necessary to

reject trivial completions when no scenarios were specified was that there has to be at least

one send message in every run. Therefore, in some cases, using scenarios can compensate for

the lack of detailed formal specifications.

119



Limitations and shortcomings

One primary limitation of the techniques described in this section is that they require the

individual state machines to be finite-state, without any state variables. Although this is not a

restriction from a theoretical perspective, because most interesting distributed protocols are

indeed finite-state, it is often tedious to express a distributed protocol — even if it is indeed

finite-state — without using any state variables. The resulting representation is often extremely

low-level and unintuitive to human beings, who typically model such protocols as extended state

machines with state variables and describe the evolution of the system by symbolic updates to

these state variables, with the transitions themselves conditioned on symbolic guard expressions

over these state variables. The work described in the next section attempts to remedy this

shortcoming, and to solve the full protocol completion problem formulated in Section 2.3.

120



8
Completion of Distributed Protocols with Symmetry

In this section, we describe a fully automated solution to solve an unrestricted version of

the problem formulated in Section 2.3, where the programmer provides the esm-sks for

the protocol, and each esm and esm-sk may have an arbitrary number of state variables.

Furthermore, no restrictions are applied on the kinds of payloads that messages can carry. This

chapter is based on the work originally published in [ARS+15].

8.1 Overview of Symmetric Protocol Completion

Figure 8.1 shows the algorithm for symmetric protocol completion as an instantiation of

the algorithmic scheme shown in Figure 3.2. The input here is a set of esms and esm-sks,

so the block labeled 4 — which compiles the input provided by the user into esm-sks—

in Figure 3.2 is no longer necessary here. Based on the esms and esm-sks our algorithm

generates the necessary determinism and symmetry constraints ϕ0, which we require every

interpretation to satisfy. The rest of the algorithm is conceptually similar to the algorithm

described in Chapter 7. We model the unknown functions used in the guards and updates

in the esm-sks as uninterpreted functions — rather than as Boolean variables as was the

case in the algorithm described in Chapter 7 — and ask the SMT solver for an interpretation

which satisfies the set of constraints maintained by the algorithm. The protocol is then

instantiated with this interpretation and checked for correctness using a custom-built model-

checker. Errors discovered during this check are automatically analyzed to obtain constraints on

the uninterpreted functions which make at least the particular error trace in question infeasible

in future iterations. This process is repeated until we obtain an interpretation that results in a

correct, completed protocol.

121



esms and esm-sks
A1,A2, . . . ,An

1

Generate Symmetry
and determinism
constraints ϕo

Constraints ψ
2

Generate I

such that
I |= ϕ0 ∧ϕ∧ψ

5

Instantiate
Protocol

6

Check
correctness

7

Correct
Protocol

Safety and
liveness monitors

3

Analyze error trace
and augment ϕ with
additional constraints

8

ϕ0

ψ

Correct?

Incorrect?
Error Trace

ϕ augmented with
additional constraints

Figure 8.1: Overview of our approach for symmetric protocol completion.

The rest of this section is organized as follows: Section 8.2 describes the algorithm we

have developed to solve the symmetric protocol completion problem in depth. Section 8.3

describes the model checking algorithms used check correctness of a proposed protocol, and

also includes a description of a general purpose model checking framework which was built as

a part of this effort. Section 8.4 describes the results of the using the techniques described in

this chapter to synthesize a mutual exclusion protocol, Dijkstra’s self stabilization protocol and

several variants of a moderately sized cache coherence protocol.

8.2 Solving the Symmetric Protocol Completion Problem

We first describe how the initial constraints ϕ0 shown in Figure 8.1 are generated. We then

describe how counterexamples obtained from a suitable model checker, which supports sym-

metry and fine-grained fairness assumptions, are automatically analyzed to augment ϕ with

additional constraints, which rule out at least the particular counterexample in question. We

conclude this section with a short discussion on optimizations and heuristics which play a

crucial role in getting the algorithm to scale to larger instances of the symmetric protocol

completion problem.

122



8.2.1 Initial Constraints

The initial constraints ϕ0 can be thought of being comprised of two disjoint sets. One set

of constraints to ensure that any interpretation chosen renders the instantiation of the state

machines deterministic; and another set of constraints to ensure that any interpretations that

satisfies them will result in a protocol which satisfies the symmetry assumptions specified by

the programmer. We will refer to these two sets of constraints as determinism constraints and

symmetry constraints, respectively.

Determinism Constraints

Recall that an esm-sk is deterministic under an interpretation I if and only if for every

state (l,σ) if there are multiple transitions enabled at (l,σ), then they must be input

transitions on distinct input channels. We constrain the interpretation I chosen at ev-

ery step such that all ESM sketches in the protocol are deterministic under I. Consider

the esm-sk for Peterson’s algorithm shown in Figure 1.13(b). We have two transitions

from the location L3, with guards gcrit(Pm, Po,flag, turn) and gwait(Pm, Po,flag, turn). We

ensure that these expressions never evaluate to true simultaneously with the constraint

¬∃v1v2v3v4 (gcrit(v1, v2, v3, v4)∧ gwait(v1, v2, v3, v4)). Although this is a quantified expres-

sion, which can be difficult for SMT solvers to solve, note that we only support finite types,

whose domains are often quite small. So our tool unrolls the quantifiers and presents only

quantifier-free formulas to the SMT solver.

Symmetry Constraints

Consider the case where the interpretation chosen for the guard gcrit shown in Figure 1.13(b),

was such that gcrit(P0, P1, 〈⊥,>〉, P0) = true. Then, for the interpretation I to be symmetric

with respect to the appropriate set of types for Peterson’s algorithm, we require that I is

such that gcrit(P1, P0, 〈>,⊥〉, P1) = true as well, because the latter expression is obtained by

applying the permutation {P0 7→ P1, P1 7→ P0} on the former expression. Note that the elements

of the flag array in the preceding example were flipped, because flag is an array indexed by

the symmetric type processid. In general, given a function f ∈ Ui, we enforce the constraint

∀π ∈ perm(T).∀d ∈ dom(f). (f(π(d)) ≡ π(f(d))), where T is the set of all types as described

in Section 2.2. As with determinism constraints, these quantified constraints are unrolled

before they are presented to the SMT solver.

123



8.2.2 Analyzing Counterexample Traces

We now describe in detail how we perform the analysis of counterexamples returned by the

model checker. Our implementation first composes the ESM sketches to form a product esm-sk

Π. It then compiles down this product esm-sk Π into guarded commands. These guarded

commands operate over a set of variables which include the state variables of every esm and

esm-sk in the protocol, as well as a distinguished variable that tracks the location of each esm

or esm-sk. The guards and updates of each guarded command are as defined in Section 2.2,

and the updates include the update to the distinguished location variable for each esm and

esm-sk as well. The guards and updates of the guarded commands are also transformed by the

compiler to use select, store, project and update functions12 for reads and updates of arrays

and records respectively. Furthermore, repeated assignments to the same variable in a guarded

command are coalesced into a single assignment. In effect, each variable (be it of a scalar type,

an array type or a record type) has at most one assignment to it in the list of updates associated

with each guarded command. These transformations on the guarded commands make it easier

to compute the weakest preconditions of predicates with respect to the guarded commands, as

we shall now explain.

Let the set of guarded commands be G, given a guarded command cmd ∈ G, we define

guard(cmd) to be the guard of cmd and update(cmd) to be the list of coalesced updates of

cmd. The weakest precondition of a predicate ϕ with respect to an assignment statement

stmt , l := e is defined as wp(stmt,ϕ) ≡ ϕ[l 7→ e], where ϕ[l 7→ e] is the expression obtained

by replacing all instances of the sub-expression l in ϕ with the expression e. We extend the

definition of the weakest precondition of a predicate ϕ with respect to a sequence of statements

in the natural way. The weakest precondition of a predicate ϕ with respect to a guarded

command cmd is defined is defined aswpcmd(cmd,ϕ) ≡ guard(cmd)→ wp(update(cmd),ϕ).

In the rest of this section, we use the symbol > to refer to the Boolean constant true and the

symbol ⊥ to refer to false, respectively, for brevity and readability.

Analyzing Deadlocks

In Figure 1.13(b), consider the candidate interpretation where both gcrit, gwait are set to be uni-

versally false. Two deadlock states are then reachable: S1 = ((L3,L3), {flag 7→ 〈>,>〉, turn 7→
12These are functions defined in the theory of arrays and records by the SMTLIB2 standard. For details, see
http://smt-lib.org/.

124



P1} and S2 = ((L3,L3), {flag 7→ 〈>,>〉, turn 7→ P0}. We strengthen ϕ by asserting that these

deadlocks do not occur in future interpretations: either S1 is unreachable, or the system can

make a transition from S1 (and similarly for S2). In this example, the reachability of both

deadlock states is not dependent on the interpretation, i.e., the execution that leads to the

states does not exercise any unknown function, hence, we need to make sure that the states

are not deadlocks. The possible transitions out of location (L3,L3) are the transitions from L3

to L3 (waiting transition) and from L3 to L4 (critical transition) for each of the two processes.

In each deadlock state, at least one of the four guards has to be true. So in the case of the

deadlock in state S1, we add the following disjunction to the set of constraints:

gwait(P0, P1, 〈>,>〉, P1)∨ gcrit(P0, P1, 〈>,>〉, P1) ∨

gwait(P1, P0, 〈>,>〉, P1)∨ gcrit(P1, P0, 〈>,>〉, P1)

Similarly for the case of the deadlock in state S2, we add the following disjunction to the set of

constraints:

gwait(P0, P1, 〈>,>〉, P0)∨ gcrit(P0, P1, 〈>,>〉, P0) ∨

gwait(P1, P0, 〈>,>〉, P0)∨ gcrit(P1, P0, 〈>,>〉, P0)

The two disjunctions are added to the set of constraints, since any candidate interpretation has

to satisfy them in order for the resulting product to be deadlock-free.

Analyzing Safety Violations

Consider now an erroneous interpretation where the critical transition guards are true for both

processes when turn is P0, that is: gcrit(P0, P1, 〈>,>〉, P0) and gcrit(P1, P0, 〈>,>〉, P0) are set to

true. Under this interpretation the product can reach the error location (L4,L4). We perform a

weakest precondition analysis on the corresponding execution to obtain a necessary condition

under which the safety violation is possible. In this case, the execution crosses both critical

transitions and the generated constraint is ¬gcrit(P0, P1, 〈>,>〉, P0)∨¬gcrit(P1, P0, 〈>,>〉, P0).

Note that the constraints obtained from this analysis are necessary: the protocol under any

interpretation that satisfies the negation of the constraints would exhibit the same safety

violation.

More formally, given an error trace that is a non-repeating execution (i.e., a witness for a

safety violation or a deadlock) which consists of an initial state valuation σ0, and a sequence

125



of guarded commands from G, say, cmd1, cmd2, . . . , cmdn. Given a predicate Γ , we define

pre0(Γ) ≡ Γ , and recursively define prei(Γ) ≡ wpcmd(cmdn−i−1, prei-1(Γ)). Then, if the trace

is a witness for a safety violation, we add the constraint C , pren(Γ)[v 7→ σ0(v)], for every

variable v in the system, to our set of constraints ϕ, where Γ is the invariant which was violated.

We note that after simplifications, C will be a constraint that refers only to the unknown

functions fu ∈ U; also, all arguments to an unknown function fu will be concrete values in C.

In fact, C will not refer to any variable at all, once it has been appropriately simplified. Our

prototype employs extensive simplifications at each step during the computation of weakest

preconditions to ensure that the formulas do not grow to be unmanageably large.

On the other hand if the trace is a witness for a deadlock, we add the constraint C ,

pren
(∨

cmd∈G guard(cmd)
)
[v 7→ σ0(v)], for every variable v in the system, to the set of con-

straints ϕ maintained by the algorithm. This constraint ensures that if this particular execution

is ever permitted under an interpretation for the unknown functions U chosen in the future,

then some guarded command is enabled at the end of the execution, under that interpretation,

therefore no longer rendering the final state of the execution a deadlock.

Analyzing Liveness Violations

An interpretation that satisfies the constraints gathered above is one that, when turn is P0,

enables both waiting transitions and disables the critical ones. Intuitively, under this interpreta-

tion, the two processes will not make progress if turn is P0 when they reach L3. The executions

in which the processes are at L3 and either P0 or P1 continuously take the waiting transition is

an accepting one. As with safety violations, we eliminate liveness violations by adding con-

straints generated through weakest precondition analysis of the accepting executions. In this

case, this results in two constraints: ¬gwait(P0, P1, 〈>,>〉, P0) and ¬gwait(P1, P0, 〈>,>〉, P0).

However, in the presence of fairness assumptions, these constraints are too strong. This is

because removing an execution that causes a fair liveness violation is not the only way to resolve

it: another way is to make it unfair. Given the weak fairness assumption on the transitions on

the criticalPi channels, the correct constraint generated for the liveness violation of Process P0

is: ¬gwait(P0, P1, 〈>,>〉, P0)∨ gcrit(P0, P1, 〈>,>〉, P0)∨ gcrit(P1, P0, true, true, P0), where the

last two disjuncts render the accepting execution unfair.

To describe the process of analyzing liveness counterexamplesmore formally, we assume that

infinite accepting executions are given as a pair of a finite stem execution of size n and a finite

126



cycle execution of sizem. First, we describe the case where no fairness assumptions exist in the

system. The constraint computed from an accepting execution asserts either that the sequence

of transitions should not be enabled or that the state of the system at the beginning of the cycle

should be not be the same as the state at the end. If the set of variables of Π is {v1, . . . , vN} we

introduce symbolic constants v ′1, . . . , v
′
N and set Γ ≡ v1 6= v ′1 ∨ v2 6= v ′2 ∨ · · ·∨ vN 6= v ′N. We

first compute C = prem(Γ) on the cycle execution and then substitute v ′1, . . . , v
′
N for v1, . . . , vN

in C: C ′ = C[v1 7→ v ′1, . . . , vN 7→ v ′N]. We then get the final constraint by computing pren(C
′)

on the stem execution.

We now describe the case where strong fairness assumptions are present. Let Fs be the set

of strong fairness assumptions and G be the union of all sets F ∈ Fs such that every guarded

command in F is disabled everywhere in the cycle. We adapt the computation of prei in the

cycle execution as follows: pre ′i(Γ) ≡ wpcmd(cmdn−i−1, prei-1(Γ)∨
(∨

cmd∈G guard(cmd))
)
.

Enabling a command cmd in G at a step in the cycle execution has the effect of making the

accepting cycle unfair: since cmd is never executed in the cycle, enforcing guard(cmd) makes

cmd infinite often enabled but never taken.

The case where weak fairness requirements are present is similar: we set G to be the union

of all the sets F ∈ Fw, such that: (1) there exists at least one state in the cycle which has

the property that every guarded command in F is disabled at that state, and (2) no guarded

command in F is ever executed anywhere in the cycle, i.e., there do not exist states s1 and s2

in the cycle such that s2 can be reached from s1 by executing some command in F. The rest of

the process to obtain a constraint that ensures that the cycle is unfair is the same as for strong

fairness assumptions.

8.2.3 Heuristics and Optimizations

We describe a few key optimizations and heuristics that we have applied in the model checking

step, as well as in the constraints that we present to the SMT solver. We have empirically

observed that these techniques improve the scalability and predictability of our technique.

Not all counterexamples are created equal

The constraint we get from a single counter-example trace is weaker when it exercises a

large number of unknown functions. Consider, for example, a candidate interpretation

for the incomplete Peterson’s algorithm which, when turn = P0, sets both waiting transi-

127



tion guards gwait to true, and both critical transition guards gcrit to false. We have already

seen that the product is not live under this interpretation. From the infinite execution lead-

ing up-to the location (L3,L3), and after which P0 loops in L3, we obtain the constraint13

¬gwait(P0, P1, 〈>,>〉, P0). On the other hand, if we had considered the longer self-loop at

(L3,L3), where P0 and P1 alternate in making waiting transitions, we would have obtained the

weaker constraint ¬gwait(P0, P1, 〈>,>〉, P0)∨ ¬gwait(P1, P0, 〈>,>〉, P0). In general, erroneous

traces which exercise fewer unknown functions have the potential to prune away a larger

fraction of the search space and are therefore preferable over traces exercising a larger number

of unknown functions.

In each iteration, the model checker discovers several erroneous states. In the event that

the candidate interpretation chosen is blatantly incorrect, it is infeasible to analyze paths to all

error states. A naïve solution would be to analyze paths to the first n errors states discovered

(where n is configurable). But depending on the strategy used to explore the state space, a

large fraction these errors could be similar14, and would only provide us with rather weak, or

even identical sets of constraints. On the other hand, exercising as many unknown functions

as possible, along different paths, has the potential to provide stronger constraints on future

interpretations. In summary, we bias the model checker to cover as many unknown functions

as possible along different paths, such that along any given path, the number of unknown

functions that are exercised is kept as small as possible.

Heuristics/Prioritization to guide the SMT solver

As mentioned earlier, we use an SMT solver to obtain interpretations for unknown functions,

given a set of constraints. When this set is small, as is the case at the beginning of the algorithm,

there exist many satisfying interpretations. At this point the interpretation chosen by the SMT

solver can either lead the rest of the search down a “good” path, or lead it down a futile path.

Therefore the run time of the synthesis algorithm can depend heavily on the interpretations

returned by the SMT solver, which we consider a non-deterministic black box in our approach.

To reduce the influence of non-determinism of the SMT solver on the run time of our

algorithm, we bias the solver towards specific forms of interpretations by asserting additional

constraints. These constraints associate a costwith interpretations and require an interpretation

with a given bound on the cost, which is relaxed whenever the SMT solver fails to find a solution.

13Ignoring fairness assumptions.
14We observed this phenomenon in our initial experiments.

128



We briefly describe the most important of the heuristics/prioritization techniques: (1)

We minimize the number of points in the domain of an unknown guard function at which it

evaluates to true. This results in minimally permissive guards. (2) Based on the observation

that most variables are unchanged in a given transition, we prioritize interpretations where

update functions leave the value of the variable unchanged, as far as possible. (3) Another

possibility that we have explored is to try to minimize the number of arguments on which the

value of an unknown function depends.

8.3 Model Checking

To effectively and repeatedly generate constraints to drive the synthesis loop, a model checker

needs to: (a) support checking liveness properties, with algorithmic support for fine grained

notions of strong and weak fairness, (b) dynamically prioritize certain paths over others, as

explained in Section 8.2.3, and (c) exploit symmetries inherent in the model. The fine grained

notions of fairness over sets of transitions, rather than bulk process fairness are crucial. For

instance, in the case of unordered channel processes, we often require that no message be

delayed indefinitely, which cannot be captured by enforcing fairness at the level of the entire

process. The ability to prioritize certain paths over others is also crucial so that candidate

interpretations are exercised to the extent possible in one model checking run. Finally, support

for symmetry-based state space reductions can greatly speed up each model checking run.

Surprisingly, we found that none of the well-supported model checkers met all of our

requirements. spin [Hol97] only supports weak process fairness at an algorithmic level

and does not employ symmetry-based reductions. Our efforts to encode the necessary fine

grained strong fairness requirements as ltl formulas in spin resulted in the Büchi monitor

construction step either blowing up or generating extremely large monitor processes. Support

for symmetry-based reductions is present in Murϕ [ID96, Dil96], but it lacks support for

liveness checking.15 SMC [SGE00] is a model checker with support for symmetry reduction

and strong and weak process fairness. Unfortunately, it is no longer maintained, and has very

rudimentary counterexample generation capabilities. Finally, NuSMV [CCG+02] does not

support symmetry reductions, but supports strong and weak process level fairness. But, due to

bugs, we were unable to obtain counterexamples in some cases.

15There exists an unmaintained version of Murϕ which does support checking of some restricted forms of ltl
properties, but it only supports weak fairness.

129



We therefore implemented a model checker based on the ideas used in Murϕ [Dil96] for

symmetry reduction, and an adaptation of the techniques presented in [ES97] for checking

liveness properties under fine grained fairness assumptions. At a high level, the model checking

algorithm consists of the following steps: (1) construct the symmetry-reduced state graph

of the model. (2) If the reachable state space does not contain a state where an invariant is

violated, then construct the symmetry-reduced product graph, obtained by composing the

model with the Büchi monitors representing the ltl requirements. (3) find accepting strongly

connected components (SCCs) in the symmetry-reduced product graph. (3) delete unfair states

from each SCC; repeat steps (3) and (4) until either a fair SCC is found or no more accepting

SCCs remain. We now provide a brief description of the architecture of our model checking

and synthesis framework, called kinara16 and of how each of these steps are implemented in

kinara.

8.3.1 Architecture of kinara
Figure 8.2 depicts the high level architecture of the kinara framework. kinara is implemented

as a C++ library, which can support multiple front-ends for describing models and requirements,

including the Murϕ language. The arrows in Figure 8.2 denote inter module dependencies. For

example, the arrow from the module labeled “Low-level Model Representation” to the module

labeled “Expression Representation” indicates that the model representation depends on the

functionality provided by the module responsible for expression representation.

At the heart of kinara is an extensible library for representing expressions. The expression

module deals with the syntax of expressions, and also provides APIs to create types. The module

also supports expressions involving array indexing, field references of a record. Expressions

can also be quantified over values of a type.

The low-level model representation APIs provide constructs for describing the model as a set

of guarded commands. The guard of each guarded command is a Boolean valued expression,

and the updates are a sequence of simple assignments to lvalues. Because kinara only supports

finite types, we assume that loops are unrolled in the low-level model description. The low-level

representation does not check that symmetry breaking constructs are not used. It assumes

that a higher-level front-end handles these aspects. In fact, in the low-level representation,

all objects that are parameterized by a set of symmetric types are assumed to have already

16kinara is not another recursive acronym, or kinara is not another reachability analyzer. kinara is open
source software and is publicly available at https://github.com/abhishekudupa/kinara

130

https://github.com/abhishekudupa/kinara


Expression
Representation

Low-level Model
Representation

Büchi Monitor
Representation

State Space
Generation and
Representation

Counterexample
Generation

Operator
Semantics

Simplification
Routines

Front-end for
esm and esm-sk

Descriptions

Synthesis
Engine

Core kinara modules

Pluggable semantics
modules

Figure 8.2: Architecture of the kinara framework for model-checking and synthesis

been unrolled, with the exception of Büchi monitors. These are handled differently, as we

explain in Section 8.3.3. For example, the low-level representation of the Peterson’s mutual

exclusion algorithm shown in Figure 1.13 will have two processes, one for each instantiation

of the parameters. The values of the parameters Pm and Po in each of the machines will be

substituted with concrete values from the set {P0, P1} corresponding to the instantiation. The

definitions of symmetry in terms of executions from Chapter 2, imply the following constraints

on the low-level model representation:

• For every guarded command cmd, there must also exist the corresponding guarded command

π(cmd), for every π ∈ perm(T). Here π(cmd) is obtained by syntactically permuting cmd

by the permutation π.

• The transitions of every Büchi automaton must also be symmetric in the same manner. The

notion of symmetry for Büchi automata will be described in greater detail in Section 8.3.3.

• For every fairness set F ∈ Fw, (respectively Fs), of the form F , {cmd1, cmd2, . . . , cmdm},

it must be the case that for every permutation π ∈ perm(T) the fairness set F ′ ∈ Fw

131



(respectively F ′ ∈ Fs), where the fairness set F ′ is F permuted according to π and has the

form F ′ , {π(cmd1),π(cmd2), . . . ,π(cmdm)}.

Also, note that the low-level model representation represents the product of all the esms and

esm-sks that form the protocol, where the product construction is as described in Chapter 2.

The framework also provides APIs to construct Büchi monitors. These are restricted to

be state machines without state variables, but which can inspect the state of the model to

determine the next state to transition to. These may be symmetric as well, but we defer a

discussion on symmetric Büchi monitors to Section 8.3.3.

The module for state space generation provides mechanisms for efficiently representing the

state space, where each state is represented as a sequence of bytes which encodes the valuation

of variables in the state. Given a state which violates an invariant, or a fair, accepting strongly

connected component, the counterexample generation module presents a counterexample

as a simple path or a stem and a loop respectively. Given that the state space is represented

in a compressed or symmetry-reduced manner, generating a usable counterexample is non-

trivial, especially in the case of counterexamples which demonstrate the violation of a liveness

requirement. Owing to this complexity, we have chosen to implement the counterexample

generation as a separate module.

We note that the user is not restricted to specifying the model and requirements using

the low-level model description APIs. Front-ends that support higher levels of abstraction can

be implemented to translate models specified using these abstractions to the low-level model

description. In our instantiation, we have implemented a front-end library that allows the

specification of the model as communicating state machines and state machine sketches. This is

indicated using dashed lines in Figure 8.2. The front-end which we have implemented ensures

that symmetry breaking constructs are not used. This is done by enforcing the following rules at

a syntactic level: (1) no reference to a concrete value of a symmetric type is allowed anywhere,

and (2) the only operation defined on values of symmetric types is equality. In effect, this

requires that the only way that the values of a symmetric type can be referred to is in the

context of a for each construct, which is quantified over the values of the symmetric type. This

ensures that there exists one instance of the quantified object — which could be an assignment,

a transition, a message, a fairness assumption, or even an esm or esm-sk — for each value

in the symmetric type. In addition, invariants and safety properties can only refer to values

of a symmetric type using a universal or existential quantifier over the type. These syntactic

132



restrictions are sufficient to prevent a user from specifying invariants that are not symmetric

over the symmetric model.

Recall that the kinara expression module deals only with the syntax of expressions. The

semantics of expressions are not a part of the core kinara library. Instead, kinara allows the

semantics to be specified using pluggable C++ modules. In our instantiation, we implemented

a module which described the semantics of the most commonly used operators in protocols,

namely basic arithmetic operators including multiplication, modulus and division as well

as conditional operators. The simplification routines are also implemented using pluggable

modules to the core kinara framework.

The synthesis engine uses the mechanisms provided by the state space representation

routines to drive the model checking along paths which lead to more fruitful constraints as

described in Section 8.2.3. It also leverages the counterexample generation routines to provide

it with a usable counterexample whenever the model checking phase discovers a safety or

liveness violation.

We now provide a brief description of the model checking algorithms, which are adaptations

of the algorithms presented in earlier work [ID96, Dil96, ES97], are implemented in kinara.

8.3.2 Construction of the Annotated Quotient Structure

Consider a model represented using the low-level representation of kinara. The model refers

to a set of variables V, each of which has a finite type drawn from the set of types T, some

of which may be symmetric types as defined in Chapter 2. The initial state of the model

is described using the valuation σ017 of the variables V. We denote by SV , the set of all

valuations over V . The evolution of the variables is described by a set of guarded commands

G , {cmd1, cmd2, . . . cmdn}. Given that all the variables range over finite domains, we can

represent each valuation σ ∈ SV using a finite-length array of bytes s ∈ S, where S represents

the set of all arrays of bytes of the given finite length. In the context of the description of the

model checking algorithms, we refer to both σ and s as a state of the model. Now, the reachable

state space of the model can be described using a graph M = (NM,EM), where NM ⊆ S

represents the vertices of the graph, and EM ⊆ NM×NM×N represents the edges, where an

edge (s1, s2, i) ∈ EM if and only if it is the case that the state executing the guarded command

cmdi in s1, results in the state s2. The initial state ofM is s0, the state corresponding to σ0.

17We assume a single initial state. If multiple initial states are required, it can be emulated by having a (dummy)
single initial state from which the system non-deterministically transitions to one of the actual initial states.

133



ThusM represents the state space of the model. We can ensure that no safety violation or

deadlock is possible in the model, by merely inspecting the reachable subset ofM. For liveness,

we will need to construct the product ofM with a Büchi monitorMB and check for cycles in

the reachable product state space.

In case of a symmetric model, storing the reachable state space of the model using the

graph M is wasteful. Consider the set of system-wide permutations perm(T) over the set

of types T that the model is defined over. Given that the model is symmetric, then for any

edge e = (s1, s2, i) ∈ EM, and for any π ∈ perm(T), we must also have that the edge

e ′ = (π(s1),π(s2), j) ∈ EM, where π(s) denotes the state obtained by permuting s according

to the permutation π ∈ perm(T), and j is the index of the guarded command obtained by

permuting the guarded command with index i according to π. Note that the command cmdj

must belong to the set of guarded commands G, otherwise, the protocol is not symmetric.

The set of system-wide permutations perm(T) thus induces an equivalence relation ∼T over

S, where s1 ∼T s2 if and only if π(s1) ≡ s2 for some π ∈ perm(T). Because perm(T) forms a

group with respect of composition of permutations, we have that ∼T is reflexive, symmetric

and transitive, and thus ∼T is an equivalence relation. Furthermore, given that S is a set of

finite-length byte arrays, we can define a total, lexicographic ordering ≺ on the elements of S.

Let us denote by [s] the set of all states s ′ such that s ∼T s
′. For every state s ∈ S, we define

the state scan ∈ [s], such that there does not exist a state s ′ ∈ [s], such that s ′ 6= scan, and

s ′ ≺ scan. Thus scan is a representative for the set of states [s].

We can now represent M in a compressed form M = (NM,EM) as follows: The set of

vertices NM , {scan | s ∈ NM}, i.e., only the representatives from the equivalence classes

in NM are stored as vertices of M. The set of edges EM ⊆ NM × NM × N × perm(T) is

constructed such that (s1, s2, i,π) ∈ EM if and only if executing the command cmdi in state

s1, results in a state π−1(s2), where π−1 denotes the inverse of the permutation π. The initial

state ofM is s0can, i.e., the representative of s0 ∈ NM. The structureM is called an Annotated

Quotient Structure (AQS) [ID96, Dil96, ES97], and has the potential to be exponentially more

compact thatM, while retaining the same information.

WhileM has been described in terms ofM, in practice, the structureM is never constructed.

Instead, the AQSM is constructed on-the-fly by using a depth-first or breadth-first strategy,

where each new state s encountered is first canonicalized to get the state scan, and building the

AQS using only these canonical representatives. The implementation in kinara performs this

134



canonicalization using an exhaustive search over all the permutations in perm(T). We did not

find the cost of this exhaustive canonicalization prohibitive for the protocols that we considered.

However, if this proves to be prohibitively expensive, we note that the the canonicalization is

implemented as a separate module in kinara. Thus, heuristic canonicalization techniques

which have been proposed earlier literature [ID96, Dil96, ES97] can be implemented in

a relatively straight-forward manner, as additional canonicalization modules which can be

plugged in as necessary.

Finally, we note that the construction of the AQSM is sufficient to verify safety proper-

ties. Assuming that the safety properties are symmetric as well, it has been shown in earlier

work [ID96, Dil96, ES97] thatM satisfies exactly the set of symmetric safety properties asM.

8.3.3 Construction of the Annotated Product Structure

The Annotated Product Structure (APS) is constructed for checking liveness properties under

fairness assumptions. The core kinara framework assumes that the representation of the Büchi

automata is symmetric as well, i.e., any given Büchi automaton is itself parameterized by zero

or more symmetric types, depending on the properties that they check. For example, consider

the Büchi automaton shown in Figure 1.13(c). This monitor is parameterized by a variable

called PID, which can take values of type processid. One can imagine this parameterized

Büchi automaton to be representing a set of symmetric automata, of size |processid|, with one

automaton for each value that the variable PID can take. Together, these automata check that

both processes satisfy their respective (and symmetric) liveness requirements. Furthermore,

the symmetric Büchi automata are assumed to correspond to the negation of the ltl property

that the protocol is expected to satisfy. In other words, an execution that is accepted by a Büchi

automaton is an execution that violates the corresponding liveness requirement.

The core kinara framework also assumes that the fairness assumptions are symmetric,

as described earlier in Section 8.3.1. The check that the Büchi automata as well as fairness

assumptions are symmetric are handled by the front-end in our case.

Consider a Büchi automaton B over the set of locations LB and whose transition relation

is RB ⊆ LB × LB × S, with a set of initial locations Q0 ⊆ LB, and a set of accepting locations

Qacc ⊆ LB. Suppose that B is parameterized by a set of symmetric types TB ⊆ T, where

TB ≡ {T1, T2, . . . Tk}, then this essentially represents that there are KB = |T1|× |T2|× · · · × |Tk|

symmetric instances of B, with one instance for each value in I , T1 × T2 × · · · × Tk.

135



The APS M̂B is defined as a graph with the set of vertices N̂MB ⊆ NM × LB × I, and the

set of edges ÊMB ⊆ N̂MB× N̂MB×N×perm(T). An edge ((s1,q1, i), (s2,q2, j),k,π) ∈ ÊMB
if and only if all of the following hold:

1. (s1, s2,k,π) is an edge inM

2. (q1,q2, s1) ∈ RB

3. π(i) ≡ j, recall that i and j are tuples from T1 × T2 × · · · Tk, and can thus be permuted.

The state (s0can,q0, i), for all q0 ∈ Q0 and for all i ∈ I is an initial state of M̂B. A vertex

(s,q, i) ∈ N̂MB is called green if q ∈ Qacc. Green vertices in M̂B will be used to characterize

cycles in M̂B that lead to the Büchi monitor B visiting an accepting state infinitely often.

In the actual implementation, each product state simply retains a pointer to the corre-

sponding AQS state. The state of the Büchi monitor is stored as a small width integer, and the

values from I are again encoded as integers. This helps keep the size of the product structure

manageable by not duplicating the states of the AQSM. The implementation builds M̂B by

considering only the reachable portion of M and executing an on-the-fly BFS construction

which builds the APS while simultaneously constructing the product ofM with B.

8.3.4 Checking for a Fair, Accepting Cycle

Consider the APS M̂B as described in Section 8.3.3. We denote an edge of the form (ŝ1, ŝ2,k,π),

where ŝ1, ŝ2 ∈ N̂MB as ŝ1
k,π−−→ ŝ2. A path x̂ in M̂B is a finite sequence states such that every two

adjacent states are related by an edge and is denoted as x̂ , ŝ0
k1,π1−−−→ ŝ2

k2,π2−−−→ · · · kn,πn−−−−→ ŝn.

Given such a path x̂, we denote the composition of permutations along that path by πx̂, i.e.,

πx̂ ≡ πn ◦ πn−1 ◦ · · · ◦ π1. Then, we have from earlier work [ES97] that an APS M̂B has a fair

accepting cycle if and only if there exists a strongly connected sub-graph Ĉ in M̂B which has

the following properties:

1. Ĉ contains at least one green state, in which case, we call Ĉ itself as being green.

2. For every F ∈ Fw, of the form F , {cmd1, cmd2, . . . , cmdm} either (1) there exists a state

in Ĉ, such that every command in F is disabled, i.e., the guard of every command in F

evaluates to false on that state or (2) for every state ŝ where some cmdi ∈ F is enabled,

there exists a path x̂ lying entirely within Ĉ, beginning at ŝ and terminating at a state ŝ ′,

such that a ŝ ′ is reached on x̂ by executing the command πx̂(cmdi). In other words, the

path x̂ has the form x̂ , ŝ k1,π1−−−→ · · ·
kj,πj−−−→ ŝ ′, where kj is the index of the πx̂(cmdi). We

will refer to this property as “Property(A)”

136



Algorithm 8.1: Algorithm to find a fair, green strongly connected subgraph

1 compute the strongly connected components of M̂B

2 do
3 deleted← false

4 foreach strongly connected component Ĉ which is green do
5 if Ĉ satisfies Property(A) and Property(B) then
6 return Ĉ

7 if Ĉ does not satisfy Property(A), but satisfies Property(B) then
8 continue

9 if Ĉ does not satisfy Property(B) then
10 foreach F ∈ Fs such that Property(B) is violated for F do
11 delete from M̂B all states where some command cmd ∈ F is enabled
12 deleted← true

13 while deleted is true
14 return ⊥

3. For every F ∈ FS, of the form F , {cmd1, cmd2, . . . , cmdm} either (1) No command in F is

enabled in any state in Ĉ, or (2) for every state s such that some command cmdi ∈ F is

enabled, there exists a path x̂ lying entirely within Ĉ, beginning at ŝ and terminating at a

state ŝ ′ such that ŝ ′ is reached on x̂ by executing the command πx̂(cmdi). We will refer to

this property as “Property(B)”

Intuitively, these two requirements track the permutations that occur along a path and ensure

that the path satisfies all the fairness assumptions, despite the fact that the path involves

permuations and could possibly be compactly encoding a large number of un-permuted paths.

Algorithm 8.1 shows how the existence of such a strongly connected subgraph. It begins

by trying to find a maximal strongly connected subgraph which satisfied all the fairness

assumptions. This can be done efficiently using Tarjan’s algorithm for discovering strongly

connected components in a graph [Tar72]. Suppose that a maximal strongly connected

subgraph — which is the same as a strongly connected component — is not fair, due to some

strong fairness assumption not being satisfied, the algorithm then decomposes the strongly

connected subgraph by deleting some vertices, and restarts the process.

8.4 Experimental Evaluation

Having described the kinara model checking and synthesis framework in some detail, we

proceed to a description how well the framework performed on a few protocol synthesis tasks.

137



We combine the description of the protocol synthesis task with an explanation of how the

kinara prototype fared in the subsequent parts of this section.

8.4.1 Peterson’s Mutual Exclusion Algorithm

We evaluated the proposed method to synthesize Peterson’s algorithm, which was described

in Section 1.2.3. In addition to the missing guards ggrit and gwait, we also replace the update

expressions of flag[Pm] in the (L1,L2) and (L4,L1) transitions with unknown functions that

depend on all state variables. In the initial constraints we require that gcrit(Pm, Po,flag, turn)∨

gwait(Pm, Po,flag, turn). The synthesis algorithm returns with an interpretation in less than a

second. Upon submitting the interpretation to a SyGuS solver, to obtain symbolic represen-

tations of the interpretations assigned to the unknown functions, the synthesized symbolic

expressions match the ones shown in Figure 1.13(b).

8.4.2 Self Stabilizing Systems

Our next case study is the synthesis of self-stabilizing systems [Dij74]. A distributed system

is self-stabilizing if, starting from an arbitrary initial state, in each execution, the system

eventually reaches a global legitimate state, and only legitimate states are ever visited after. We

also require that every legitimate state be reachable from every other legitimate state. Consider

N processes connected in a line. Each process maintains two Boolean state variables x and up.

The processes are described using guarded commands of the form, “if guard then update”.

Whether a command is enabled is a function of the variable values x and up of the process

itself, and those of its neighbors. We attempted to synthesize the guards and updates for the

middle two processes of a four process system P1,P2,P3,P4. Specifically, the esm-sk for P2

and P3 have two transitions, each with an unknown function as a guard and two unknown

functions for updating its state variables. The guard is a function of xi−1, xi, xi+1, upi−1, upi,

upi+1, and the updates of xi and upi are functions of xi and upi. We followed the definition

in [GT14] and defined a state as being legitimate if exactly one guarded command is enabled

globally. We also constrain the completions of P2 and P3 to be identical.

8.4.3 Cache Coherence Protocol

Recall that a cache coherence protocol ensures that the copies of shared data in the private

caches of a multiprocessor system are kept up-to-date with the most recent update to that

138



C1 Dir

I I or S
Rd

RequestS

Shr := Shr ∪ {C1}
NumSharers++DataD

2C(D
)

Data := D
UnblockS

RdA
ck

SS

(a) Read Command in Invalid or Shared

C1 Dir

I IWr(D)

RequestE

Shr := {C1}
Owner := C1
NumSharers++

DataD
2C

Num
Acks

:= 0

Data := D
UnblockE

WrAc
k

EE

(b) Write Command in Invalid

Figure 8.3: Simple Cases for Read and Write Commands

shared data, by any other processor in the system. We describe the working of the German

cache coherence protocol, which has often been used as a case study in model checking

research [CMP04, TT08]. The protocol consists of a Directory process, n symmetric Cache

processes and n symmetric Environment processes, one for each cache process. Each cache

may be in the E,18 S or I state, indicating read-write, read, and no permissions on the data

respectively. All communication between the caches and the directory is non-blocking, and

occurs over buffered, unordered communication channels.

The environment issues read and write commands to its cache. In response to a read

command, the cache C sends a RequestS command to the directory. The directory sends C the

most up-to-date copy of the data, after coordinating with other caches, grants read access to

C, notes that C is a sharer of the data. In response to a write request from the environment,

the cache C sends a RequestE command to the directory. The directory coordinates with every

other cache C ′ that has read or write permissions to revoke their permissions, then grants C

exclusive access to the data, and notes that C is the owner of the data.

We consider a more complex variant of the German cache coherence protocol to evaluate the

techniques we have presented so far, which we refer to as German/MSI. The main differences

from the base German protocol are: (1) Direct communication between caches is possible in

18Not to be confused with the E state in the MESI protocol described in Section 4.4.

139



C1 Dir C2

I or S S S
Shr = {C2}Wr(D)

RequestE

DataD
2C

NumAcks :=
−|Shr

|

Data := D
AckCounter := NumAcks

Inv
Req := C1

InvAck

AckCounter++

AckCounter = 0 UnblockE

WrAck
Shr := {C1}
Owner := C1

E E I

Figure 8.4: Write Command in Shared State

some cases, (2) A cache in the S state can silently relinquish its permissions, which can cause

the directory to have out-of-date information about the caches which are in the S state. (3) A

cache in the E state can coordinate with the directory to relinquish its read/write permissions

over the block. The complete German/MSI protocol, modeled as communicating extended

state machines, is fairly complex, with a symmetry-reduced state space of about 20,000 states

when instantiated with two cache processes and about 450,000 states when instantiated with

three cache processes.

We now describe the working of the protocol used in the experimental evaluation using

scenarios which demonstrate the expected behavior of the caches and directory in response to

various stimuli from their environments.

Simple Cases for Read and Write Commands

We first consider the case where a cache process receives a read or (resp. write) command

from the environment, and no other cache in the system has exclusive permissions on data

(resp. any permissions on the data).

Figure 8.3a shows the actions performed by the various processes when a cache receives

a read command from its environment. It sends a RequestS message to the directory. In this

140



particular scenario, the directory has recorded that all other caches are either in the I or S

state, and proceeds to send the most up-to-date copy of the data in a DataD2C message. The

cache then updates its local copy of the data, notifies its environment that the command has

been processed and transitions to the S state. Figure 8.3b shows how a cache processes a

write command from its environment which contains the new data value D to write. In this

particular case, the directory knows that all other caches are in the I state and thus proceeds

to acknowledge the RequestE message from the cache with a DataD2C message which also

contains the number of acknowledgments the cache needs to wait for before gaining write

permissions on the data. In this case, since all other caches are in the I state, the number of

acknowledgments to wait for is zero. The cache therefore, immediately updates its local copy

of the data with the new value D and notifies its environment that the command has been

processed and transitions to the E state. The case where all the other caches are not in the I

state will be described shortly, using another scenario.

Read and Write Commands which require Invalidations

On the other hand, Figure 8.4 depicts the scenario when a write command is received by a

cache and some other cache is in the S state. In this case, the directory sends invalidations

to all the caches in the S state, and sends a DataD2C message to the requesting cache with

the NumAcks field set to the number of sharers, notifying the cache that it needs to wait

for as many invalidate acknowledgments. The other caches directly communicate with the

requesting cache by sending acknowledgment of the invalidation from the directory. Note

that this is not part of the base German/MSI coherence protocol, where the directory collects

acknowledgments instead. With the extension, the cache-to-cache communication reduces the

amount of processing that needs to be done in the centralized directory, and also reduces the

latency (in terms of number of message hops needed to service a request from the enviroment)

for some requests.

Figure 8.5a describes the behavior of the protocol when a cache receives a write command

and some other cache in the system is in the E state. The actions are similar to the case where

some other cache is in the S state, except that the cache already in the E state directly sends

its data to the requesting cache, as well as to the directory. And the requesting cache does

not need to wait for any acknowledgments. Note that this is again an extension to the base

German/MSI protocol, where the data is sent to only the directory, and the directory forwards

141



C1 Dir C2

I E E
Shr = {C2}
Owner = C2

Wr(D)

RequestE

InvReq := C1

Data
C2C

(D)

Da
taC

2D
(D
)
I

Data := D
Data := D

UnblockEWrAck

Shr := {C1}
Owner := C1

E E I

(a) Write Command in Exclusive State

C1 Dir C2

I E E
Shr = {C2}
Owner = C2Rd

RequestS

InvSReq := C1

Data
C2C

(D)

Da
taC

2D
(D
)
S

Data := D
Data := D

UnblockSRdA
ck

Shr :=
{C1,C2}
Owner := ⊥

S S S

(b) Read Command in Exclusive State

Figure 8.5: Commands in Exclusive State in the German/MSI Protocol

the data back to the requesting cache. Again, this extension reduces the amount of processing

that needs to be handled at the centralized directory.

The scenario when a cache receives a read command from the environment when some

other cache in the system is in the E state is shown in Figure 8.5b. As in the scenario shown

in Figure 8.5a, the directory sends an invalidation to the cache in the E state, which in turn

responds by sending the most up-to-date copy of the data to the directory as well as to the

requesting cache. It then downgrades its permissions to the S state. Both the cache and the

directory update their local copies of the data. The directory notes that the cache earlier in the

E state is now in the S state and also adds the requesting cache to set of sharers.

Relinquishing Permissions (Evictions)

Figure 8.6a and Figure 8.6b describe the behavior of the protocol in the case where a cache

wishes to relinquish its permissions. This is not a scenario that occurs in the base German/MSI

protocol, but is necessary in a real-world coherence protocol, where a block of data that has

been unused for some period of time may need to be evicted to make room for some other data.

142



C1

S

Ev
Data := ⊥

EvAck

I

(a) Evict in Shared State

C1 Dir

E E
Ev

WriteBack(D)
Data := D
Sharers := {}

WriteBa
ckAck

Data := ⊥

EvA
ck

II

(b) Evict in Exclusive State

Figure 8.6: Evict Commands in the German/MSI protocol

This situation is depicted in Figure 8.6 by the receipt of an Ev command from the environment

by the cache. In the event that the cache in the S state, it silently evicts the line, without

notifying the directory. This can be done, only because the directory already has the most

up-to-date copy of the data — recall that the S state only grants read permissions to the cache,

hence it could not have modified the data. On the other hand if the cache is in the E state,

then it needs to send the most up-to-date copy of the data to the directory. Therefore it sends

a WriteBack message to the directory which contains the most up-to-date copy of the data. The

directory then updates its local copy of the data with this copy and notes that all caches in the

system are in the I state.

Corner-cases in the German/MSI Protocol

We now describe the corner-cases that could occur in the MSI/German protocol due to the

asynchronous interleaving of the scenarios presented so far. Consider the case where cache

C1 is in the I state. In contrast, the directory records that C1 is in state S and is a sharer, due

to C1 having silently relinquished its read permissions at some point in the past, according

the the scenario shown in Figure 8.6a. Now, both caches C1 and C2 receive write commands

from their respective environments. Cache C2 sends a RequestE message to the directory,

requesting exclusive write permissions. The directory, under the impression that C1 is in state

S, sends an Inv message to it, informing it that C2 has requested exclusive access and C1 needs

to acknowledge that it has relinquished permissions to C2. Concurrently, cache C1 sends a

143



C1 Dir C2
I S

Shr = {C1}
I

Wr(D) Wr(D)

RequestEIM
Requ

estE

Inv
,

Re
q=
C2

DataD2C
NumAcks=1

Data := D

???

InvAck

Figure 8.7: The racy scenario in the MSI/German Protocol

RequestE message to the directory requesting write permissions as well, which gets delayed.

Subsequently, the cache C1 receives an invalidation when it is in the state IM, the behavior

for which is not described by any of the scenarios provided by the programmer. The correct

behavior for the cache in this situation (shown by dashed arrows), is to send an InvAck message

to the cache C2. The guard, the state variable updates, as well as the location update is what

we have left unspecified in the case of this particular scenario.

The MSI/German protocol as described in this section has four other corner-cases. Two

of these are similar to the one shown in Figure 8.7, with the difference being that either the

RequestS message is sent by C1 in response to a Read command from the environment, or that

C1 begins in the S state, and sends a RequestE message in response to a Write command from

the environment.

We now describe the last two corner-cases. These are depicted in Figure 8.8. The scenarios

shown in Figures 8.6b and 8.5b interleave, to obtain the situation shown in Figure 8.8. The

cache C1 having sent a WriteBack message to the directory is not expecting an Inv message.

Similarly, the directory, having sent an Inv to cache C1 is not expecting a WriteBack message

from it. The correct way for the processes to behave in this situation is show by dashed arrows

in Figure 8.8. The cache behaves as if the Invmessage was aWritebackAckmessage and notifies

its environment of completion. The directory updates its local copy of the data with the one

from the WriteBack message, and then sends this data over to the cache C2, informing it that it

need not wait for any acknowledgment. After this point, both the cache and directory behaviors

know how to interact with each other as shown in Figure 8.3a. For completeness, the way the

scenario plays out is shown in Figure 8.8 as well, using dashed arrows.

144



C1 Dir C2
E E

Shr = {C1}
Owner = C1

IEv Rd

Requ
estS

Inv

WriteBack(D)

??? ???

Data := D
Owner := ⊥
DataD2C(D)NumAcks := 0

Ev
Ac
k

Data := ⊥

I Data := D

Unbloc
kS

RdAckShr := {C2}

I S S

Figure 8.8: A Corner-case in the German/MSI Protocol

As part of the evaluation, we left all the five corner-case behaviors just described unspecified

in the incomplete protocol. Our tool was able to successfully synthesize the behavior for

the unspecified parts of the German/MSI protocol correspond to all of the five corner-cases

described in this section, within a reasonable amount of time.

8.5 Summary of Experimental Results

Table 8.1 summarizes our experimental findings. All experiments were performed on a Linux

desktop, with an Intel Core i7 CPU running at 3.4 GHz. with 8 GB of memory. The columns

show the name of the benchmark, the number of unknown functions that were synthesized

(# UF), the size of the search space for the unknown functions, the number of states in the

complete protocol (# States), “symm. red.” denotes symmetry reduced state space. The “#

Iters.” column shows the number of iterations required by the algorithm, where each iteration

corresponds to analyzing one or more counterexample traces to generate additional constraints

and querying the SMT solver for a new interpretation that also satisfies the newly added

constraints. The last two columns show the total amount of time spent in SMT solving and

the end-to-end synthesis time. We used the SMT solver Z3 [dMB08] in our implementation.

Further, Z3 was used in its incremental mode as constraints were added across iterations.

145



Benchmark # UF
Search

# States # Iters.
SMT Total

Space
Time Time
(s) (s)

Peterson 3 236 60 14 0.1 0.13
Dijkstra 6 2192 ~2000 30 27 64
German/MSI-2 16 ~24700 ~20000 (symm. red.) 217 31 298
German/MSI-4 28 ~27614 ~20000 (symm. red.) 419 898 1545
German/MSI-5 34 ~29000 ~20000 (symm. red.) 525 2261 3410

Table 8.1: Experimental Results for Completion of Protocols with Symmetry

The “German/MSI-n” rows correspond to the synthesizing the unknown behavior for the

German/MSI protocol, with n out of the five unknown transitions left unspecified. In each case,

we applied the heuristic to obtain minimally permissive guards and biased the search towards

updates which leave the values of state variables unchanged as far as possible, except in the

case of the Dijkstra benchmark, as mentioned earlier. Also, note that we ran each benchmark

multiple times with different random seeds to the SMT solver to offset the variance due to

random restarts in the SMT solver. The run times reported in Table 8.1 are the worst of the

run times that we measured over these multiple runs.

8.5.1 Discussion

We now briefly discuss some qualitative aspects of our experiences with experimenting with

the prototype tool, and highlight on the aspects that were crucial in making the approach work

well.

Programmer Assistance

In all cases, the programmer specified the kinds of messages to handle in the states where the

behavior was unknown. For example, in the case of the German/MSI protocol, the programmer

indicated that in the IM state on the cache, it needs to handle an invalidation from the directory

(see Figure 8.7). In general, the programmer specified what needs to be handled, but not the

how. This was crucial to getting our approach to scale. Without this information, the algorithm

would be required to handle every possible event in every possible situation. We have observed

that sheer size of the constraints generated with this approach is too large for SMT solvers to

process efficiently.

146



Synthesizing Symbolic Expressions

The interpretations returned by the SMT solver are in the form of tables, which specify the

output of the unknown function on specific inputs. We mentioned that if a symbolic expression

is required we can pass this output to a SyGuS solver, which will then return a symbolic

expression. We were able to synthesize compact expressions in all cases using the enumerative

SyGuS solver [ABJ+13].

Overhead of Decision Procedures

We observe from Table 8.1 that for the longer running benchmarks, the run time is dominated

by SMT solving. In all of these cases, a very large fraction of the constraints asserted into the

SMT solver are constraints to implement heuristics which are specifically aimed at guiding

the SMT solver, and reducing the impact of non-deterministic choices made by the solver.

Specialized decision procedures that handle these constraints at an algorithmic level [BP14]

can greatly speed up the synthesis procedure. Another possibility is to not rely on an SMT solver

to generate interpretations, but rather, use a SyGuS solver to generate symbolic expressions

which will serve as interpretations. From our empirical observations, for small expression

sizes (as is the case in most of the benchmarks we have evaluated), a SyGuS solver returns an

interpretation much faster than an SMT solver. Unfortunately, the available SyGuS solvers do

not handle the synthesis of multiple correlated functions well. So either (1) Existing SyGuS

solvers would need to algorithmically support the synthesis of multiple correlated functions, or

(2) The problem would need to be massaged into a form such that the SyGuS solver is only

ever called upon to generate an interpretation for a single function.

147



9
Related Work

Synthesis of reactive systems has been studied extensively in literature. To describe, or even

list all past research in this area would be a Herculean endeavor in itself, which we shall

not attempt to undertake. Instead, we shall highlight a few key ideas that have shaped the

landscape of this research area. We begin with describing the classical approaches to reactive

synthesis purely from ltl, ctl, or ctl* specifications. We then briefly describe synthesis

approaches based on partial or incorrect system descriptions, and proceed to a discussion of

other approaches that share similarities, in spirit, with the approaches we propose in this

manuscript. We conclude the discussion of related work by describing recent work in the area

of straight-line and recursive program synthesis.

9.1 Classical Reactive Synthesis Techniques

Classical approaches to solve the synchronous (and non-distributed) version of reactive synthe-

sis, i.e., where the environment and the system make transitions synchronously in discrete steps,

can be broadly classified into linear-time and branching-time techniques, depending on whether

the specification is in ltl or a branching-time logic like ctl or ctl* respectively. In linear-

time synthesis, the overall strategy [PR89, Ros92] is to (1) construct a (non-deterministic)

Büchi automaton corresponding to the ltl specification ϕ, (2) Determinize the Büchi automa-

ton [Saf88] into a deterministic Rabin automaton, (3) Interpret the resulting Rabin automaton

as tree automaton on infinite trees over the Boolean predicates that are part of the specification

and (4) Check if the resulting tree automaton is empty. This approach has a complexity of

O(22
n
) (in fact, it is 2exptime-complete [Ros92]) where n represents the syntactic size of

the original ltl specification ϕ. Other approaches for ltl synthesis view the problem as a

148



controller-synthesis problem [RW89, TW94a, TW94b, MPS95]. This view of reactive synthesis

as controller-synthesis has also been applied in the branching-time world for a subset of ctl

and is shown to be np-complete for full ctl [Ant95], when the controller is memory-less. It

has also been shown that ctl control with memory is exptime-complete, and ctl* control is

2exptime-complete [Kup95a, Kup95b, KV96]. Distributed reactive synthesis has been shown

to be undecidable [PR90, LT00, Tri04, FS05].

Classical ltl synthesis algorithms have found little practice, owing mostly to Safra’s de-

terminization procedure [Saf88] being notoriously difficult to implement [ATW06, THB95].

This has led to the development of “Safraless” approaches to synthesis [KPV06, KV05, EK14],

which eschew Safra’s determinization procedure and use alternative structures. Along the

other dimension, it has been shown that restricting the specification language to a reasonably

expressive subset of full ltl renders the reactive synthesis problem tractable, with polynomial

time complexity [BJP+12]. To deal with the undecidability of distributed protocol synthesis,

recent advances have proposed bounded techniques for synthesis [FS05, FS13], often com-

bined with symbolic reasoning [Ehl11, Ehl12]. Another interesting approach approximates the

eventuality properties of an ltl specification, successively refining the approximation until an

implementation can be synthesized [FJR11, FJR13]. Randomization, in the form of a genetic

programming based algorithm has also been used to skirt around the undecidability of the

problem [KP08, KP09].

One of the drawbacks of most classical synthesis techniques is that they operate over the

Boolean domain and often, the final output of such a synthesis algorithm is a transition relation

(or function) over propositional variables. This is typically not how a human views a reactive

system, and as a result such a representation can be rather opaque to a human being. Also,

while writing declarative specifications in a temporal logic does have theoretical elegance, it is

non-trivial for a human being to describe a protocol using only such specifications.

The work described in this manuscript differs from classical synthesis techniques in that we

allow a mix of specification languages: the high-level properties of the system are specified

using declarative constructs, while the common-case behavior of the protocol is described in

an operational manner and not required to be complete. Our techniques aim to fill in the tricky

details using the high-level temporal logic specifications. A pleasant consequence of this is that

the final artifact of our synthesis approaches is a human-readable, operational description of

the system.

149



9.2 Synthesis from Partial or Incomplete Descriptions

The sketch system [SLRBE05, STB+06, SAT+07, SLJB08, Sol09] is a program synthesis

framework where the correctness requirement is expressed as a — possibly a sub-optimal, but

functionally correct — C program. The programmer then expresses the “shape” of the desired

program as another C-like program, called the sketch with certain details — called “holes”

in the sketch parlance — unspecified. The sketch system fills in the holes in the sketch

such that the completed version of the sketch is functionally equivalent to the sub-optimal C

program provided by the user. The sketch system has been successfully used to synthesize

bit-stream programs for encryption and decryption [SLRBE05], finite state programs [STB+06]

and stencil computations [SAT+07]. Perhaps the work that is most closely related to the work

described in this manuscript is the psketch system [SLJB08], which synthesizes concurrent

data structures. The ideas we present in this manuscript are inspired by sketch and share a

lot of methodological similarities with sketch. However, unlike sketch, we focus specifically

on distributed reactive synthesis problems.

The more recently proposed storyboard programming approach [SS11, SS12] by the

authors of sketch also shares several similarities with the techniques presented in this

manuscript. Our notion of a scenario is very similar to the notion of a storyboard as used by

Singh, et. al. A key difference is that storyboards seem to be more geared towards describing

representational transformations over linked data structures, where there is no notion of time,

whereas scenarios have an implicit notion of time associated with them.

Our work is also related to recent research on program repair [JGB05, vEJ13].The goal of

program repair is to repair a buggy program, such that some objective function is maximized.

To this end, techniques like modeling the problem as one of finding a memory-less strategy for

a Büchi game [JGB05] and finding a repair such that the repair deviates as little as possible

from the buggy program on non-buggy executions [vEJ13] have been proposed. However these

techniques are closer in spirit to classical synthesis approaches than to the ones we describe in

this manuscript and therefore suffer from many of the same shortcomings.

9.3 Synthesis from Sequence Charts

Specifying a reactive system using example scenarios — in the form of message sequence

charts, or live sequence charts — also has a long tradition. In particular, the problem of

150



deriving an implementation that exhibits at least the behaviors specified by a given set of

scenarios is well-studied [AEY03, UKM03, BBO12]. A particularly well-developed approach

is behavioral programming [HMW12, DH01, HM03] that builds on an extension of message

sequence charts, called live sequence charts [DH01], and has been shown to be effective for

specifying the behavior of a single controller reacting with its environment. It is not clear how

requirements in the form of temporal logic specifications can be supported in this framework.

The work in [BKKL10] generalizes Angluin’s learning algorithm [Ang87] to synthesize

automata from MSCs but does not allow for the specification of requirements and relies on the

programmer to answer classification and equivalence queries and is therefore not automatic.

The problem of inferring extended finite-state machines has been studied in the context of active

learning [CHJS14], but the techniques are again, not automatic, and do not accommodate

temporal logic specifications. Scenarios — in the form of “flows” — have also been used in the

modular verification of cache coherence protocols [TT08, OTT09].

9.4 Straight-line and Recursive Program Synthesis

The earliest work that we are aware of in the area of synthesizing straight-line program

fragments is the extensive work on what was then called “super-optimizations”. The original

problem was formulated by Massalin [Mas87], and the objective was to deduce the smallest

possible program that was behaviorally identical to another, possibly longer and less efficient,

program. The approach presented by Massalin [Mas87] could only scale to a programs with a

very few instructions. Since then, more scalable algorithms have emerged [JNR02, JNZ06] and

superoptimizers have also been applied in peephole optimizations and binary translation [BA06,

BA08, SSCA15]. More recently, stochastic approaches have been successfully applied to yield

scalable superoptimization algorithms [SSA13, SSA14]. Stochastic techniques techniques have

also been applied to synthesize loop invariants [SA14].

Significant inroads have been made in the last decade or so in the area of synthesizing small

program fragments to perform various tasks, starting from some form of formal specifications.

The research on the sketch framework [SLRBE05] perhaps reinvigorated research in the

area of program synthesis. The idea of using an unoptimized program as a specification

for a more optimized version which is to be synthesized was novel. Although the initial

system was for synthesis of bit-streaming programs [SLRBE05], the techniques were later

adapted to sketching finite programs [STB+06], stencils computations [SAT+07], concurrent

151



data structures [SLJB08] as well as to synthesize code for data structure manipulations via

storyboards [SS11]. Synthesis of data structure manipulation routines has also been explored in

other recent work [FCD15, AGK13]. Other recent work has viewed the problem of synthesizing

straight-line code as that of component-based synthesis [GJTV11, JGST10]. Enumerative

approaches to synthesizing code fragments that are vectorized equivalents of unoptimized

code has also been explored in recent work [BCG+13].

More recently, the FlashFill algorithm [Gul11] was one of the first to leverage the notion

of an inductive specification, which has been described in Chapter 5. The original FlashFill

algorithm was designed for synthesizing string transformations in spreadsheets based on a few

input-output examples demonstrating the desired transformation [Gul11]. However, since then,

the techniques have been applied to a variety of different domains [KG15, BGHZ15, LG14,

GKT11, SG12, PGGP14, PGBG12]. A framework called FlashMeta [PG15], which unifies the

domain-specific inductive synthesis algorithms implemented in the rest of the Flash algorithms

using a common abstract algorithm has also been recently developed.

Program Synthesis techniques have also recently been used to synthesize loop invariants.

The ICE [GLMN14] and Alchemist [SGM15] are prime examples, along with algorithms that use

a stochastic search [SA14]. A tool based on the Alchemist [SGM15] algorithm participated in

the 2015 SyGuS competition in the invariant synthesis track. Decision trees based learners have

also been explored recently for SyGuS solvers [GNMR15], where they have been primarily used

to learn thresholds for affine classifiers. Type directed approaches to program synthesis from

input-output examples have also recently been a subject of study [OZ15, Ose15, FOWZ16].

152



10
Conclusions

This chapter concludes this dissertation by first providing a brief summary of the research that

has been described in this dissertation, followed by an orthogonal exploration of the themes

that have been prevalent throughout this dissertation. We then highlight some avenues along

which the work described in this dissertation can be improved and extended, and conclude

with the author’s opinions and outlook about research in the area of verification and program

synthesis.

10.1 Summary of the Dissertation

This dissertation approached the problem of synthesizing a distributed reactive synthesis from

the direction of completing an incomplete description of the protocol. Apart from the inherent

difficulty of developing such protocols, our primary motivation for this approach was that it

was not clear if describing the protocol purely using a temporal logic is necessarily easier than

describing it operationally. Furthermore, the complexity of distributed reactive synthesis from

temporal logic descriptions made it all the more appealing to view the synthesis problem as a

fruitful interaction between a synthesis tool and a programmer.

We formalized the problem of protocol completion, and described our experience with using

a theoretically elegant, but practically ineffective, symbolic algorithm to solve the protocol

completion problem.

We then described a tool called transit where the programmer would symbolically codify

the parts of the protocol that are well understood. The programmer would then describe

fixes to counterexamples presented by the tool transit using concolic snippets, which were a

mixture of symbolic constraints and constraints involving concrete values, the latter of which

153



is intended to be derived from a concrete erroneous execution. The programmer is a part of

the synthesis loop in transit. Our prototype of transit was able to assist the programmer

in describing a complex industrial cache coherence protocol, demonstrating the scalability of

the proposed techniques.

We then made a brief digression to describe the SyGuS problem that came about as a

generalization of the core computational problem solved within transit. The SyGuS effort

was successful and annual SyGuS contests are conducted with participation growing each year.

We described an enumerative strategy to solve instances of the SyGuS problems, studied the

limitations of purely enumerative approaches, and proposed an improved algorithm that is

enumerative in spirit, but demonstrates enhanced scalability. We empirically evaluated a tool

based on this algorithm, called eusolver, and found it to be able to solve a set of benchmarks

that no existing SyGuS solver had been able to solve, to the best of our knowledge.

We then concluded our excursion into the world of syntax-guided synthesis and developed

algorithms for distributed protocol synthesis that eliminated the programmer from the synthesis

loop by automatically analyzing counterexamples and suitably constraining future solution

candidates. We evaluated these algorithms on a variety of benchmarks, and observed that

while they scaled to moderately complex protocols, their scalability was nonetheless lower than

that of transit. We also described a model checking and synthesis framework, called kinara,

that we developed as part of this effort, and which has now been released as an open-source

project.

10.2 Themes Explored in this Dissertation

Two themes have been pervasive throughout this dissertation. The first has been about the

interplay between the amount of programmer involvement and the scalability of the synthesis

algorithms. The second has been about the use of alternative and, hopefully more intuitive and

convenient techniques, to specify programmer intent. We now discuss, in some detail, how

each of these themes, has been explored in the research described in this dissertation.

10.2.1 Interplay between Programmer Involvement and Scalability

The transit system required the programmer to be a part of the synthesis loop. This resulted

in the tool being scalable enough to assist a programmer to develop a large industrial cache

coherence protocol. The implementation of transit described in this dissertation made

154



use of an enumerative algorithm that is simplistic in comparison with the decision tree based

algorithm presented in Chapter 6. The scalability of transit is restricted only by the scalability

of the expression inference algorithm. So, we can expect that transit could scale to being

able to assist a programmer in designing even more complex protocols if coupled with better

algorithms for expression inference, such as the one described in Chapter 6.

In contrast to transit, the work described in Chapters 7 and 8 was aimed at being fully

automatic. While they could scale to reasonably complex protocols, we were unable to get

them to scale to the industrial SGI-Origin cache coherence protocol that transit proved to be

useful on. While, in general, more programmer inputs and involvement should imply an easier

synthesis problem that the algorithms are required to solve, our experience with the use of

scenarios in the work described in Chapter 7 was counter-intuitive: more programmer inputs,

in the form of providing more scenarios resulted in larger incomplete state machines, which

in turn led to poor scalability. However, an important point to note here is that in specifying

the scenarios the programmer made minimal use of the state labeling techniques described in

Section 7.2. A more extensive use of these techniques could have resulted in more compact

incomplete state machines, and thus enhanced the scalability of the algorithms. The fact

that the constraints were expressed as integer linear programs also contributed greatly to the

scalability of the techniques presented in Chapter 7. This was something that we could not

leverage when we allowed esms and esm-sks with state variables in Chapter 8, and we had to

replace a rather lean ILP solver with a relatively heavy-weight SMT solver as the constraint

solving engine.

The interplay between the amount of information provided by the programmer and scal-

ability is also apparent in the work described in Chapter 8. There, had the programmer not

specified a small set of transitions that were candidates for synthesis, the algorithm would not

have scaled. By narrowing the search space using an expert’s intuition, the programmer in

effect enables the synthesis algorithms to be useful in providing assistance.

10.2.2 Use of Alternative Techniques to Specify Intent

Traditionally, research on reactive synthesis has focused on synthesis starting from temporal

logic specifications or requirements. In addition to being computationally difficult, it is not

clear that writing formal temporal logic specifications is necessarily easier, simpler or better

than writing an operational description of the model, from a software engineering perspective.

155



The work presented in this dissertation, on the other hand, uses other techniques to specify

the programmer intent. The transit system used concolic snippets added by the programmer

over the course of developing a protocol. Program synthesis techniques were then used to

obtain a candidate protocol which was consistent with the snippets provided by the programmer.

A point to note here is that the set of concolic snippets may be ambiguous. The expression

inference algorithm in transit uses the principle of Occam’s razor and deems the simplest or

the smallest expression to be most likely to explain the under-specified set of constraints.

Chapter 7 demonstrated how scenarios could be coupled with synthesis techniques in the

construction of distributed protocols. We believe that scenarios are a more intuitive form of

specification for distributed protocols, than specification of the protocol using a state machine-

like abstraction. Although the problem definition in Chapter 8 demanded an incomplete

protocol in the state machine abstraction, the incomplete protocol was in fact constructed from

a set of scenarios.

10.3 Avenues for Future Work

There are several directions in which the work described in this dissertation can be extended

and improved upon. We highlight what we consider to be the most fruitful directions in this

section.

Use of Inductive Specifications in Protocol Completion

The scalability of the algorithms described in Chapter 8 leaves something to be desired. It is

apparent from the summary of experimental results shown in Table 8.1 that the scalability is

limited by the performance of the SMT solver. But as we have mentioned earlier, the constraints

obtained on the uninterpreted functions are essentially inductive specifications. The only terms

appearing in such constraints are the uninterpreted functions applied to concrete constant

values, and concrete constant values. However, each constraint may involve disjunctions and

may also refer to multiple unknown functions. In other words, these specifications are not

separable, where separability is a concept we have defined in Section 6.2.1. Recent work [PG15]

has studied how such inductive specifications can be leveraged to develop scalable synthesis

algorithms. Although the work describes techniques for synthesis with disjunctive and non-

separable constraints, it is not clear how they perform: all the instantiations of the algorithms

seem to be for separable inductive specifications. Applying or adapting these techniques for use

156



in the context of constraints obtained from the automatic protocol completion problem might

be an interesting area of future work. Efficient algorithms for solving constraints of this form

would have an immediate impact on the scalability of the algorithms presented in Chapter 8,

as it would obviate the need for the SMT solver

Synthesis Algorithms for Non-separable Specifications

The algorithm for solving the SyGuS problem described in Chapter 6 dealt only with separable

specifications. The original esolver however, could handle non-separable specifications and

even specifications involving multiple functions, albeit with reduced scalability. Investigating if

the techniques that make eusolver scalable on separable specifications can be adapted for

use on non-separable specifications would be a useful endeavor. Indeed, such specifications

do occur in practice as shown in Chapter 8; in addition the SyGuS benchmark suite also has a

small number of benchmarks with non-separable specifications.

10.4 Reflections on Verification and Program Synthesis

The problem of synthesizing a program or a circuit from a formal description of the behavior

of the program or circuit is often mentioned as (one of) the holy grail of computer science,

starting from Church’s problem, presented in 1957 [Chu57]. The number of scholarly articles

published on program synthesis in the past decade vindicates my19 opinion that synthesis is a

technology whose time has come. Someone who is even slightly less than optimistic might be

of the opinion that it is premature: After all, we haven’t been able to get verification techniques

to scale beyond programs with which have in the order of a hundred thousand lines. Mission

critical software systems like automotive control and avionics software are still largely without

formal proofs of correctness. Why then attack a new problem when there are already so many

unsolved problems?

I believe that research in program synthesis techniques could in fact prove beneficial to

research in program verification techniques, and most certainly the other way around as well.

My opinion is that the reason that program verification techniques have not seen the uptake that

can be considered desirable is simply the relatively high entry barrier, coupled with ineffective

19Disclaimer: The views and opinions expressed in this section are solely those of the author, and are not endorsed
by the dissertation supervisor, the dissertation committee, or any of the author’s collaborators. Statements and
predictions in this section may also not be strongly backed by evidence, empirical or otherwise, and serve solely
to express the author’s point-of-view.

157



feedback techniques when verification fails. The entry barrier is most commonly in the form of

having to write annotations in the form of loop-invariants and heap separability assumptions

— usually in some variant of formal first-order logic — for existing code bases, which are often

large to begin with. While there exists no silver bullet and programmers will eventually have to

bite the bullet and provide these annotations if they desire verified code, a lot can be done to

make it less unpleasant to write these annotations. For example, my personal experience with

the VCC framework [CDH+09] has been that the feedback provided when verification fails is

relatively unhelpful. I am simply presented with an execution that invalidates the annotations

that were provided, leaving me with little information about how to correct my annotations,

and what a correct loop invariant is.

I believe that program synthesis techniques could help in remedying this situation by either

(1) automatically trying to synthesize a loop invariant, or (2) providing me with suggestions

that differ from the existing, proposed loop invariant in minor ways and are more likely to

be correct. It delights me to see that program synthesis techniques are already being applied

to synthesize invariants [SGH+13, SA14]. The second possibility has also been explored in

the context of programs and reactive systems [vEJ13, vEJ15]. Such techniques would greatly

reduce the entry barrier to using program verification to prove real-world systems correct.

While program synthesis techniques can help adoption of formal methods, I also believe

that research in the area of human computer interaction has a large role to play in this arena in

the near future. While formal methods researchers are most comfortable working with abstract

objects in first order or other, more esoteric logics, the average programmer is unlikely to

appreciate the succinctness and the precision of such formalisms. Research in natural language

descriptions of such objects is likely to encourage adoption of formal methods far more than

anything else. There has been work in using natural language for program synthesis [RGM15]

and teaching and grading assignments for a course on automata theory [ADG+13, DKA+15],

but I predict that the future will see more of such work, which will ultimately make formal

methods more accessible.

Lastly, while research in the areasmentioned in this section can help in encouraging adoption

of formal methods as an integral part of software development, the most powerful motivator is

likely to be financial. So, the ultimate thrust must come from within an organization, making it

an organizational policy to use and apply verification and program synthesis techniques. This

is likely to happen only when researchers in this discipline actively collaborate with industrial

158



partners to find out what problems matter to them, and attempt to solve the — possibly

un-fashionable and also difficult — problems that matter.

159



Bibliography

[ABJ+13] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-

ina Torlak, and Abhishek Udupa. Syntax-guided Synthesis. In Formal Methods in

Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20–23, 2013,

pages 1–8, 2013. [Cited on page 147.]

[ACR15] Rajeev Alur, Pavol Cerný, and Arjun Radhakrishna. Synthesis Through Unification.

In Computer Aided Verification - 27th International Conference, CAV 2015, San

Francisco, CA, USA, July 18–24, 2015, Proceedings, Part II, pages 163–179, 2015.

[Cited on pages 77, 78, 79, 84, 85, 86, and 105.]

[ADG+13] Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan.

Automated Grading of DFA Constructions. In IJCAI 2013, Proceedings of the 23rd

International Joint Conference on Artificial Intelligence, Beijing, China, August 3–9,

2013, 2013. [Cited on page 158.]

[AEY03] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of Message

Sequence Charts. IEEE Transactions on Software Engineering, 29(7):623–633,

2003. [Cited on page 151.]

[AFSSL14] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Syntax-

guided Synthesis Competition (SyGuS-COMP). http://www.sygus.org, 2014.

[Cited on pages 49 and 71.]

[AGK13] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive Program

Synthesis. In Computer Aided Verification - 25th International Conference, CAV

2013, Saint Petersburg, Russia, July 13–19, 2013. Proceedings, pages 934–950,

2013. [Cited on page 152.]

[AII+13] Takuya Akiba, Kentaro Imajo, Hiroaki Iwami, Yoichi Iwata, Toshiki Kataoka, Nao-

hiro Takahashi, Michal Moskal, and Nikhil Swamy. Calibrating Research in Program

160

http://www.sygus.org


Synthesis Using 72,000 Hours of Programmer Time. Technical report, MSR, 2013.

[Cited on page 86.]

[AMR+14] Rajeev Alur, Milo M. K. Martin, Mukund Raghothaman, Christos Stergiou, Stavros

Tripakis, and Abhishek Udupa. Synthesizing Finite-State Protocols from Scenarios

and Requirements. In Hardware and Software: Verification and Testing - Proceedings

of the 10th International Haifa Verification Conference, HVC 2014, Haifa, Israel,

November 18–20, 2014, pages 75–91, 2014. [Cited on page 107.]

[Ang87] Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Inf.

Comput., 75(2):87–106, 1987. [Cited on page 151.]

[Ant95] Marco Antoniotti. Synthesis and Verification of Discrete Controllers for Robotics and

Manufacturing Devices with Temporal Logic and the Control-D System. PhD thesis,

New York University, New York, NY, USA, 1995. [Cited on page 149.]

[ARS+15] Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis, and

Abhishek Udupa. Automatic Completion of Distributed Protocols with Symmetry.

In Computer Aided Verification - 27th International Conference, CAV 2015, San

Francisco, CA, USA, July 18–24, 2015, Proceedings, Part II, pages 395–412, 2015.

[Cited on page 121.]

[ATW06] Christoph Schulte Althoff, Wolfgang Thomas, and Nico Wallmeier. Observations

on Determinization of Büchi Automata. In Implementation and Application of

Automata, volume 3845 of Lecture Notes in Computer Science, pages 262–272.

Springer Berlin Heidelberg, 2006. [Cited on page 149.]

[BA06] Sorav Bansal and Alex Aiken. Automatic Generation of Peephole Superoptimizers.

In Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA,

October 21–25, 2006, pages 394–403, 2006. [Cited on page 151.]

[BA08] Sorav Bansal and Alex Aiken. Binary Translation Using Peephole Superoptimizers.

In Proceedings of the 8th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2008, December 8–10, 2008, San Diego, California, USA,

pages 177–192, 2008. [Cited on page 151.]

[BBO12] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding Choreography Real-

izability. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2012, pages 191–202, New York, NY,

161



USA, 2012. ACM. [Cited on page 151.]

[BCG+13] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, César Kunz, and Mark Marron.

From Relational Verification to SIMD Loop Synthesis. In ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2013, Shenzhen, China,

February 23–27, 2013, pages 123–134, 2013. [Cited on pages 71 and 152.]

[BGHZ15] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn. FlashRelate:

Extracting Relational Data from Semi-structured Spreadsheets using Examples.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2015, Portland, OR, USA, June 15–17, 2015,

pages 218–228, 2015. [Cited on pages 75 and 152.]

[BJP+12] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.

Synthesis of Reactive(1) Designs. J. Comput. Syst. Sci., 78(3), 2012. [Cited on

pages 1 and 149.]

[BKKL10] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and Martin Leucker. Learning

Communicating Automata from MSCs. IEEE Transactions on Software Engineering,

36(3):390–408, May 2010. [Cited on page 151.]

[BKRS12] Tomás Babiak, Mojmír Kretínský, Vojtech Rehák, and Jan Strejcek. ltl to Büchi

Automata Translation: Fast and More Deterministic. In Tools and Algorithms for the

Construction and Analysis of Systems - 18th International Conference, TACAS 2012,

Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2012, Tallinn, Estonia, March 24 – April 1, 2012. Proceedings, pages 95–109,

2012. [Cited on pages 32 and 33.]

[BP14] Nikolaj Bjørner and Anh-Dung Phan. νZ - Maximal Satisfaction with Z3. In SCSS

2014, volume 30 of EPiC Series, pages 1–9. EasyChair, 2014. [Cited on page 147.]

[BRB90] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient Implementation

of a BDD Package. In DAC, pages 40–45, 1990. [Cited on page 35.]

[Bry85] Randal E. Bryant. Symbolic Manipulation of Boolean Functions using a Graphical

Representation. In Proceedings of the 22nd ACM/IEEE Conference on Design Au-

tomation, DAC 1985, Las Vegas, Nevada, USA, 1985., pages 688–694, 1985. [Cited

on page 35.]

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Trans. Computers, 35(8):677–691, 1986. [Cited on page 35.]

162



[BST10a] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories

Library (SMT-LIB). www.smt-lib.org, 2010. [Cited on page 71.]

[BST10b] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version

2.0. In Proceedings of the 8th International Workshop on Satisfiability Modulo

Theories (Edinburgh, UK), 2010. [Cited on page 71.]

[CCG+02] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco

Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An

Open-source Tool for Symbolic Model Checking. In Computer Aided Verification,

volume 2404 of Lecture Notes in Computer Science, pages 359–364. Springer Berlin

Heidelberg, 2002. [Cited on page 129.]

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal,

Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A Practical System for

Verifying Concurrent C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and

Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674 of

Lecture Notes in Computer Science, pages 23–42. Springer Berlin Heidelberg, 2009.

[Cited on page 158.]

[CHJS14] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Learning Extended

Finite State Machines. In Dimitra Giannakopoulou and Gwen Salaün, editors, Soft-

ware Engineering and Formal Methods, volume 8702 of Lecture Notes in Computer

Science, pages 250–264. Springer International Publishing, 2014. [Cited on page

151.]

[Chu57] Alonzo Church. Application of Recursive Arithmetic to the Problem of Circuit

Synthesis. Summaries of Talks Presented at the Summer Institute for Symbolic Logic,

Cornell University, 1957, pages 3–50, 1957. [Cited on page 157.]

[CJEF96] Edmund M. Clarke, Somesh Jha, Reinhard Enders, and Thomas Filkorn. Exploiting

Symmetry in Temporal Logic Model Checking. Formal Methods in System Design,

9(1/2):77–104, 1996. [Cited on page 46.]

[CMP04] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A Simple Method

for Parameterized Verification of Cache Coherence Protocols. In Formal Methods in

Computer-Aided Design, volume 3312 of Lecture Notes in Computer Science, pages

382–398. Springer Berlin Heidelberg, 2004. [Cited on page 139.]

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved Automata Gener-

163

www.smt-lib.org


ation for Linear Temporal Logic. In Computer Aided Verification, 11th International

Conference, CAV 1999, Trento, Italy, July 6–10, 1999, Proceedings, pages 249–260,

1999. [Cited on page 32.]

[DH01] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence

Charts. Formal Methods in System Design, 19(1):45–80, 2001. [Cited on pages 48

and 151.]

[Dij74] Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Com-

mun. ACM, 17(11):643–644, November 1974. [Cited on page 138.]

[Dil96] David L. Dill. The Murϕ Verification System. In Proceedings of the 8th International

Conference on Computer Aided Verification, CAV 1996, pages 390–393, London, UK,

UK, 1996. Springer-Verlag. [Cited on pages 4, 46, 129, 130, 133, 134, and 135.]

[DKA+15] Loris D’Antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan,

and Björn Hartmann. How Can Automatic Feedback Help Students Construct

Automata? ACM Trans. Comput.-Hum. Interact., 22(2):9:1–9:24, 2015. [Cited on

page 158.]

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools and

Algorithms for the Construction and Analysis of Systems, volume 4963 of Lecture

Notes in Computer Science, pages 337–340. Springer Berlin Heidelberg, 2008.

[Cited on pages 61, 98, 102, and 145.]

[Dur14] Alexandre Duret-Lutz. ltl translation improvements in Spot 1.0. IJCCBS,

5(1/2):31–54, 2014. [Cited on pages 32 and 33.]

[EH00] Kousha Etessami and Gerard J. Holzmann. Optimizing Büchi Automata. In

CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park,

PA, USA, August 22–25, 2000, Proceedings, pages 153–167, 2000. [Cited on page

32.]

[Ehl11] Rüdiger Ehlers. Unbeast: Symbolic Bounded Synthesis. In Tools and Algorithms for

the Construction and Analysis of Systems, volume 6605 of Lecture Notes in Computer

Science, pages 272–275. Springer Berlin Heidelberg, 2011. [Cited on page 149.]

[Ehl12] Rüdiger Ehlers. Symbolic Bounded Synthesis. Formal Methods in System Design,

40(2):232–262, 2012. [Cited on page 149.]

[EK14] Javier Esparza and Jan Křetínský. From ltl to Deterministic Automata: A Safraless

Compositional Approach. In Computer Aided Verification, volume 8559 of Lecture

164



Notes in Computer Science, pages 192–208. Springer International Publishing, 2014.

[Cited on page 149.]

[ES97] E. Allen Emerson and A. Prasad Sistla. Utilizing Symmetry when Model-Checking

under Fairness Assumptions: An Automata-Theoretic Approach. ACM Trans. Pro-

gram. Lang. Syst., 19(4):617–638, 1997. [Cited on pages 46, 130, 133, 134, 135,

and 136.]

[EW03] E. Allen Emerson and Thomas Wahl. On Combining Symmetry Reduction and

Symbolic Representation for Efficient Model Checking. In Correct Hardware Design

and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference,

CHARME 2003, L’Aquila, Italy, October 21–24, 2003, Proceedings, pages 216–230,

2003. [Cited on page 46.]

[EW05] E. Allen Emerson and Thomas Wahl. Dynamic Symmetry Reduction. In Tools

and Algorithms for the Construction and Analysis of Systems, 11th International

Conference, TACAS 2005, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4–8, 2005, Proceedings,

pages 382–396, 2005. [Cited on page 46.]

[FCD15] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing Data Structure

Transformations from Input-output Examples. In Proceedings of the 36th ACM SIG-

PLAN Conference on Programming Language Design and Implementation, Portland,

OR, USA, June 15–17, 2015, PLDI 2015, pages 229–239, 2015. [Cited on page

152.]

[FJR11] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and Composi-

tional Algorithms for ltl Synthesis. Formal Methods in System Design, 39(3):261–

296, 2011. [Cited on page 149.]

[FJR13] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Exploiting Structure in

ltl Synthesis. STTT, 15(5-6):541–561, 2013. [Cited on page 149.]

[FOWZ16] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic.

Example-directed Synthesis: A Type-theoretic Interpretation. In Proceedings of

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2016, St. Petersburg, FL, USA, January 20 – 22, 2016, pages

802–815, 2016. [Cited on page 152.]

[FS05] Bernd Finkbeiner and Sven Schewe. Uniform Distributed Synthesis. In IEEE

165



Symposium on Logic in Computer Science, pages 321–330, 2005. [Cited on pages 1

and 149.]

[FS13] Bernd Finkbeiner and Sven Schewe. Bounded Synthesis. Software Tools for

Tchnology Transfer, 15(5-6):519–539, 2013. [Cited on page 149.]

[GJTV11] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Syn-

thesis of Loop-free Programs. In Proceedings of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,

USA, June 4–8, 2011, pages 62–73, 2011. [Cited on pages 71, 78, 85, and 152.]

[GKT11] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Synthesizing Ge-

ometry Constructions. In Proceedings of the 32nd ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA,

June 4–8, 2011, pages 50–61, 2011. [Cited on page 152.]

[GLMN14] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. ICE: A Robust

Framework for Learning Invariants. In Computer Aided Verification - 26th Inter-

national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL

2014, Vienna, Austria, July 18–22, 2014. Proceedings, pages 69–87, 2014. [Cited

on page 152.]

[GNMR15] Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan Roth. Learning

Invariants using Decision Trees and Implication Counterexamples, Technical Report.

http://web.engr.illinois.edu/~garg11/papers/dt-ice.pdf, 2015. [Cited on

page 152.]

[GO01] Paul Gastin and Denis Oddoux. Fast ltl to Büchi Automata Translation. In

Computer Aided Verification, 13th International Conference, CAV 2001, Paris, France,

July 18–22, 2001, Proceedings, pages 53–65, 2001. [Cited on pages 32 and 33.]

[GT14] Adrià Gascón and Ashish Tiwari. Synthesis of a Simple Self-stabilizing System.

In Proceedings of the 3rd Workshop on Synthesis, SYNT 2014, Vienna, Austria, July

23–24, 2014., pages 5–16, 2014. [Cited on page 138.]

[Gul11] Sumit Gulwani. Automating String Processing in Spreadsheets using Input-output

Examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2011, Austin, TX, USA, January 26–28, 2011,

pages 317–330, 2011. [Cited on pages 71, 75, and 152.]

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Programming

166

http://web.engr.illinois.edu/~garg11/papers/dt-ice.pdf


Using LSCs and the Play-Engine. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2003. [Cited on page 151.]

[HMW12] David Harel, Assaf Marron, and Gera Weiss. Behavioral programming. Communi-

cations of the ACM, 55(7):90–100, 2012. [Cited on page 151.]

[Hol97] Gerard J. Holzmann. The Model Checker Spin. IEEE Trans. Softw. Eng., 23(5):279–

295, May 1997. [Cited on pages 4 and 129.]

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing Optimal Binary Decision Trees

is NP-complete. Information Processing Letters, 5(1):15–17, 1976. [Cited on page

89.]

[ID96] C. Norris Ip and David L. Dill. Better Verification through Symmetry. Formal

Methods in System Design, 9(1-2):41–75, 1996. [Cited on pages 4, 29, 30, 46, 129,

133, 134, and 135.]

[ITU96] ITU Telecommunication Standardization Sector. ITU-R recommendation Z.120,

Message Sequence Charts (MSC 1996), May 1996. [Cited on page 48.]

[JGB05] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program Repair

as a Game. In Proceedings of the 17th International Conference on Computer Aided

Verification, CAV 2005, Edinburgh, Scotland, UK, July 6–10, 2005, pages 226–238,

2005. [Cited on page 150.]

[JGST10] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided

Component-based Program Synthesis. In Proceedings of the 32nd ACM/IEEE Inter-

national Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,

South Africa, 1–8 May 2010, pages 215–224, 2010. [Cited on pages 71, 78, 85,

and 152.]

[JNR02] Rajeev Joshi, Greg Nelson, and Keith H. Randall. Denali: A Goal-directed Super-

optimizer. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Berlin, Germany, June 17–19, 2002,

pages 304–314, 2002. [Cited on page 151.]

[JNZ06] Rajeev Joshi, Greg Nelson, and Yunhong Zhou. Denali: A practical algorithm for

generating optimal code. ACM Trans. Program. Lang. Syst., 28(6):967–989, 2006.

[Cited on page 151.]

[JRU13] Garvit Juniwal, Mukund Raghothaman, and Abhishek Udupa. SyGuS Solver

Implementations. https://github.com/rishabhs/sygus-comp14, 2013. [Cited

167

https://github.com/rishabhs/sygus-comp14


on page 78.]

[KG15] Dileep Kini and Sumit Gulwani. FlashNormalize: Programming by Examples

for Text Normalization. In Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31,

2015, pages 776–783, 2015. [Cited on pages 75 and 152.]

[KP08] Gal Katz and Doron Peled. Model Checking-Based Genetic Programming with an

Application to Mutual Exclusion. In 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, TACAS, LNCS 4963, pages

141–156, 2008. [Cited on page 149.]

[KP09] Gal Katz and Doron Peled. Synthesizing Solutions to the Leader Election Problem

Using Model Checking and Genetic Programming. In Haifa Verification Conference,

pages 117–132, 2009. [Cited on page 149.]

[KPRS06] Yonit Kesten, Amir Pnueli, Li-on Raviv, and Elad Shahar. Model Checking with

Strong Fairness. Formal Methods in System Design, 28(1):57–84, 2006. [Cited on

pages 35, 36, 38, 39, 41, and 42.]

[KPV06] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless Compositional

Synthesis. In Proceedings of the 18th International Conference on Computer Aided

Verification, CAV 2006, Seattle, WA, USA, August 17–20, 2006, pages 31–44, 2006.

[Cited on page 149.]

[KR09] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach.

Addison-Wesley Publishing Company, USA, 5th edition, 2009. [Cited on pages 108

and 111.]

[Kup95a] Orna Kupferman. Augmenting Branching Temporal Logics with Existential Quan-

tification over Atomic Propositions. In Proceedings of the 7th International Conference

on Computer Aided Verification, CAV 1995, Liège, Belgium, July, 3–5, 1995, pages

325–338, 1995. [Cited on page 149.]

[Kup95b] Orna Kupferman. Model checking for Branching-time Temporal Logics. PhD thesis,

Technion, Haifa, Israel, 1995. [Cited on page 149.]

[KV96] Orna Kupferman and Moshe Y. Vardi. Module Checking. In Proceedings of the 8th

International Conference on Computer Aided Verification, CAV 1996, New Brunswick,

NJ, USA, July 31 – August 3, 1996, pages 75–86, 1996. [Cited on page 149.]

[KV05] Orna Kupferman and Moshe Y. Vardi. Safraless Decision Procedures. In Proceedings

168



of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS

2005), 23–25 October 2005, Pittsburgh, PA, USA, pages 531–542, 2005. [Cited on

page 149.]

[LG14] Vu Le and Sumit Gulwani. FlashExtract: A Framework for Data Extraction by

Examples. In ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2014, Edinburgh, United Kingdom - June 09–11, 2014, page 55,

2014. [Cited on pages 75 and 152.]

[LL97] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable

Server. In Proceedings of the 24th International Symposium on Computer Architecture,

Denver, Colorado, USA, June 2–4, 1997, pages 241–251, 1997. [Cited on pages 15,

55, 56, 68, and 69.]

[LP85] Orna Lichtenstein and Amir Pnueli. Checking That Finite State Concurrent Pro-

grams Satisfy Their Linear Specification. In Conference Record of the Twelfth Annual

ACM Symposium on Principles of Programming Languages, New Orleans, Louisiana,

USA, January 1985, pages 97–107, 1985. [Cited on page 32.]

[LT00] Hichem Lamouchi and John Thistle. Effective Control Synthesis for DES Under

Partial Observations. In 39th IEEE Conference on Decision and Control, pages 22–28,

2000. [Cited on pages 1 and 149.]

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1996. [Cited on page 23.]

[Mas87] Henry Massalin. Superoptimizer - A Look at the Smallest Program. In Proceedings

of the Second International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS II), Palo Alto, California, USA, October

5–8, 1987., pages 122–126, 1987. [Cited on page 151.]

[MNS16] Parthasarathy Madhusudan, Daniel Neider, and Shambwaditya Saha. Synthesizing

Piece-wise Functions by Learning Classifiers. In Tools and Algorithms for the

Construction and Analysis of Systems - 21st International Conference, TACAS 2016,

Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2016, Eindhoven, Netherlands, April 2 – 8, 2016. Proceedings, 2016. [Cited

on pages 77, 79, and 82.]

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the Synthesis of Discrete Con-

trollers for Timed Systems. In Symposium on Theoretical Aspects of Computer Science

169



(STACS), pages 229–242, 1995. [Cited on page 149.]

[MSB+05] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,

Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.

Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS) Toolset.

SIGARCH Comput. Archit. News, 33(4):92–99, November 2005. [Cited on page

66.]

[Mur98] Sreerama K. Murthy. Automatic Construction of Decision Trees from Data: A

Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4):345–389,

December 1998. [Cited on page 89.]

[Org05] SMT-COMP Organizers. Satisfiability Modulo Theories Competition (SMT-COMP).

http://www.smtcomp.org, 2005. [Cited on page 71.]

[Ose15] Peter-Michael Osera. Program Synthesis with Types. PhD thesis, University of

Pennsylvania, Philadelphia, PA, USA, 2015. [Cited on page 152.]

[OTT09] John W. O’Leary, Murali Talupur, and Mark R. Tuttle. Protocol Verification using

Flows: An Industrial Experience. In Proceedings of 9th International Conference on

Formal Methods in Computer-Aided Design, FMCAD 2009, 15–18 November 2009,

Austin, Texas, USA, pages 172–179, 2009. [Cited on page 151.]

[OZ15] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed Program

Synthesis. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, Portland, OR, USA, June 15–17, 2015, pages

619–630, 2015. [Cited on page 152.]

[PG15] Oleksandr Polozov and Sumit Gulwani. FlashMeta: A Framework for Inductive

Program Synthesis. In Proceedings of the 2015 ACM SIGPLAN International Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25–30, 2015,

pages 107–126, 2015. [Cited on pages 75, 76, 152, and 156.]

[PGBG12] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed

Completion of Partial Expressions. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2012, Beijing, China - June 11–16,

2012, pages 275–286, 2012. [Cited on page 152.]

[PGGP14] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. Test-driven

Synthesis. In ACM SIGPLAN Conference on Programming Language Design and

170

http://www.smtcomp.org


Implementation, PLDI 2014, Edinburgh, United Kingdom - June 09–11, 2014, pages

408–418, 2014. [Cited on page 152.]

[PR89] Amir Pnueli and Roni Rosner. On the Synthesis of a Reactive Module. In Proceedings

of the 16th ACM Symposium on Principles of Programming Languages, 1989. [Cited

on pages 1 and 148.]

[PR90] Amir Pnueli and Roni Rosner. Distributed Reactive Systems Are Hard to Synthesize.

In 31st Annual Symposium on Foundations of Computer Science, pages 746–757,

1990. [Cited on pages 1 and 149.]

[Qui86] J. Ross Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106,

1986. [Cited on page 89.]

[Qui87] J. Ross Quinlan. Simplifying Decision Trees. International Journal of Man-Machine

Studies, 27(3):221–234, 1987. [Cited on page 89.]

[Qui96] J. Ross Quinlan. Learning Decision Tree Classifiers. ACM Computing Survey,

28(1):71–72, 1996. [Cited on page 89.]

[RDK+15] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W.

Barrett. Counterexample-Guided Quantifier Instantiation for Synthesis in SMT.

In Computer Aided Verification - 27th International Conference, CAV 2015, San

Francisco, CA, USA, July 18–24, 2015, Proceedings, Part II, pages 198–216, 2015.

[Cited on pages 77, 78, 79, 83, 86, 103, and 105.]

[RGM15] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Compositional

Program Synthesis from Natural Language and Examples. In Proceedings of the

Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,

Buenos Aires, Argentina, July 25–31, 2015, pages 792–800, 2015. [Cited on page

158.]

[Ros92] Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute

of Science, 1992. [Cited on page 148.]

[RU14] Mukund Raghothaman and Abhishek Udupa. Language to Specify Syntax-guided

Synthesis Problems. CoRR, abs/1405.5590, 2014. [Cited on pages 71 and 78.]

[RW89] Peter J. G. Ramadge and W. Murray Wonham. The Control of Discrete Event

Systems. IEEE Transactions on Control Theory, 77:81–98, 1989. [Cited on pages 1

and 149.]

[SA14] Rahul Sharma and Alex Aiken. From Invariant Checking to Invariant Inference

171



Using Randomized Search. In Computer Aided Verification - 26th International

Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,

Austria, July 18-22, 2014. Proceedings, pages 88–105, 2014. [Cited on pages 151,

152, and 158.]

[Saf88] Shmuel Safra. On the Complexity of ω-automata. In 29th Annual Symposium

on Foundations of Computer Science, White Plains, New York, USA, 24–26 October

1988, pages 319–327, 1988. [Cited on pages 148 and 149.]

[SAT+07] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodík, Vijay A.

Saraswat, and Sanjit A. Seshia. Sketching Stencils. In Proceedings of the ACM

SIGPLAN 2007 Conference on Programming Language Design and Implementation,

San Diego, California, USA, June 10–13, 2007, pages 167–178, 2007. [Cited on

pages 46, 74, 150, and 151.]

[SB00] Fabio Somenzi and Roderick Bloem. Efficient Büchi Automata from LTL Formulae.

In Computer Aided Verification, 12th International Conference, CAV 2000, Chicago,

IL, USA, July 15–19, 2000, Proceedings, pages 248–263, 2000. [Cited on pages 32,

37, and 41.]

[SC85] A. Prasad Sistla and Edmund M. Clarke. The Complexity of Propositional Linear

Temporal Logics. J. ACM, 32(3):733–749, 1985. [Cited on page 115.]

[SG12] Rishabh Singh and Sumit Gulwani. Synthesizing Number Transformations from

Input-Output Examples. In Computer Aided Verification - 24th International Con-

ference, CAV 2012, Berkeley, CA, USA, July 7–13, 2012 Proceedings, pages 634–651,

2012. [Cited on pages 75 and 152.]

[SG15] Rishabh Singh and Sumit Gulwani. Predicting a Correct Program in Programming

by Example. In Computer Aided Verification - 27th International Conference, CAV

2015, San Francisco, CA, USA, July 18–24, 2015, Proceedings, Part I, pages 398–414,

2015. [Cited on page 76.]

[SGE00] A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson. SMC: A Symmetry-based

Model Checker for Verification of Safety and Liveness Properties. ACM Trans. Softw.

Eng. Methodol., 9(2):133–166, 2000. [Cited on pages 46 and 129.]

[SGH+13] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang,

and Aditya V. Nori. A Data Driven Approach for Algebraic Loop Invariants. In

Programming Languages and Systems - 22nd European Symposium on Programming,

172



ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2013, Rome, Italy, March 16–24, 2013. Proceedings, pages

574–592, 2013. [Cited on page 158.]

[SGM15] Shambwaditya Saha, Pranav Garg, and P. Madhusudan. Alchemist: Learning

Guarded Affine Functions. In Computer Aided Verification - 27th International

Conference, CAV 2015, San Francisco, CA, USA, July 18–24, 2015, Proceedings, Part

I, pages 440–446, 2015. [Cited on page 152.]

[SHW11] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency

and Cache Coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212,

2011. [Cited on pages 67 and 68.]

[SLJB08] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. Sketching

Concurrent Data Structures. In Proceedings of the 2008 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2008, 2008. [Cited

on pages 74, 150, and 152.]

[SLRBE05] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and K. Ebcioğlu.

Programming by Sketching for Bit-streaming Programs. In Proceedings of the 2005

ACM Conference on Programming Language Design and Implementation, PLDI 2005,

2005. [Cited on pages 2, 46, 74, 82, 150, and 151.]

[Sol09] Armando Solar-Lezama. The Sketching Approach to Program Synthesis. In

Proceedings of the 7th Asian Symposium on Programming Languages and Systems,

APLAS 2009, Seoul, Korea, December 14–16, 2009, pages 4–13, 2009. [Cited on

pages 46, 74, and 150.]

[Som15] Fabio Somenzi. CUDD: CU Decision Diagram Package Release 2.5.0. http://vlsi.

colorado.edu/~fabio/CUDD, 2015. [Cited on page 42.]

[SS11] Rishabh Singh and Armando Solar-Lezama. Synthesizing Data Structure Manipu-

lations from Storyboards. In SIGSOFT/FSE 2011 19th ACM SIGSOFT Symposium on

the Foundations of Software Engineering (FSE-19) and ESEC 2011: 13th European

Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5–9, 2011,

pages 289–299, 2011. [Cited on pages 150 and 152.]

[SS12] Rishabh Singh and Armando Solar-Lezama. SPT: Storyboard Programming Tool.

In Proceedings of the 24th International Conference on Computer Aided Verification,

CAV 2012, Berkeley, CA, USA, July 7–13, 2012, pages 738–743, 2012. [Cited on

173

http://vlsi.colorado.edu/~fabio/CUDD
http://vlsi.colorado.edu/~fabio/CUDD


page 150.]

[SSA13] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Superoptimization. In

Architectural Support for Programming Languages and Operating Systems, ASPLOS

2013, Houston, TX, USA - March 16 – 20, 2013, pages 305–316, 2013. [Cited on

pages 71, 78, 85, and 151.]

[SSA14] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Optimization of Floating-

point Programs with Tunable Precision. In ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -

June 09–11, 2014, page 9, 2014. [Cited on page 151.]

[SSCA15] Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. Conditionally

Correct Superoptimization. In Proceedings of the 2015 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25–30, 2015,

pages 147–162, 2015. [Cited on page 151.]

[STB+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, and Vijay A.

Saraswat. Combinatorial Sketching for Finite Programs. In Proceedings of the 12th

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21–25, 2006, pages

404–415, 2006. [Cited on pages 46, 74, 150, and 151.]

[Tar72] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J.

Comput., 1(2):146–160, 1972. [Cited on page 137.]

[TB13] Emina Torlak and Rastislav Bodík. Growing Solver-aided Languages with Rosette.

In Proceedings of the 2013 ACM International Symposium on New Ideas, New

Paradigms, and Reflections on Programming & Software, Onward! 2013, pages

135–152, 2013. [Cited on page 74.]

[TB14] Emina Torlak and Rastislav Bodík. A Lightweight Symbolic Virtual Machine for

Solver-aided Host Languages. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2014, pages 530–541,

2014. [Cited on page 74.]

[THB95] Serdar Taşıran, Ramin Hojati, and Robert K. Brayton. Language Containment

of Non-deterministic ω-automata. In Correct Hardware Design and Verification

Methods, IFIP WG 10.5 Advanced Research Working Conference, CHARME 1995,

174



Frankfurt/Main, Germany, October 2–4, 1995, volume 987 of Lecture Notes in

Computer Science, pages 261–277. Springer Berlin Heidelberg, 1995. [Cited on

page 149.]

[Tri04] Stavros Tripakis. Undecidable Problems of Decentralized Observation and Control

on Regular Languages. Information Processing Letters, 90(1):21–28, April 2004.

[Cited on pages 1 and 149.]

[Tse83] Grigorii Samuilovich Tseitin. On the Complexity of Derivation in Propositional

Calculus. Symbolic Computation, pages 466–483, 1983. [Cited on page 81.]

[TT08] Murali Talupur and Mark R. Tuttle. Going with the Flow: Parameterized Verifica-

tion using Message Flows. In Formal Methods in Computer-Aided Design, FMCAD

2008, Portland, Oregon, USA, 17–20 November 2008, pages 1–8, 2008. [Cited on

pages 48, 49, 139, and 151.]

[TW94a] John G. Thistle and W. Murray Wonham. Control of Infinite Behavior of Finite

Automata. SIAM J. Control Optim., 32(4):1075–1097, July 1994. [Cited on page

149.]

[TW94b] John G. Thistle and W. Murray Wonham. Supervision of Infinite Behavior of

Discrete-Event Systems. SIAM Journal on Control and Optimization, 32(4):1098–

1113, 1994. [Cited on page 149.]

[UKM03] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of Behavioral Mod-

els from Scenarios. IEEE Transactions on Software Engineering, 29(2):99–115,

February 2003. [Cited on page 151.]

[URD+13] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,

Milo M. K. Martin, and Rajeev Alur. transit: Specifying Protocols with Concolic

Snippets. In ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2013, Seattle, WA, USA, June 16–19, 2013, pages 287–296,

2013. [Cited on pages 48 and 51.]

[vEJ13] Christian von Essen and Barbara Jobstmann. Program Repair without Regret. In

Proceedings of the 25th International Conference on Computer Aided Verification, CAV

2013, Saint Petersburg, Russia, July 13–19, 2013, pages 896–911, 2013. [Cited on

pages 150 and 158.]

[vEJ15] Christian von Essen and Barbara Jobstmann. Program Repair Without Regret.

Formal Methods in System Design, 47(1):26–50, 2015. [Cited on page 158.]

175



[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning About Infinite Computations. Inf.

Comput., 115(1):1–37, 1994. [Cited on page 32.]

[WBE08] Thomas Wahl, Nicolas Blanc, and E. Allen Emerson. SVISS: Symbolic Verification

of Symmetric Systems. In Tools and Algorithms for the Construction and Analysis

of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29 – April 6, 2008. Proceedings, pages 459–462, 2008. [Cited on

page 46.]

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about Infinite

Computation Paths (Extended Abstract). In 24th Annual Symposium on Foundations

of Computer Science, Tucson, Arizona, USA, 7–9 November 1983, pages 185–194,

1983. [Cited on page 32.]

176


	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	The Traditional Design Methodology
	The VI Cache Coherence Protocol
	Designing Distributed Protocols: The Easy Parts
	Designing Distributed Protocols: The Difficult Parts

	An Alternative Approach to Protocol Design
	Automating the Difficult Parts of Protocol Design
	Feasibility and Effectiveness of Protocol Completion
	Protocol Completion as Synthesis of Interpretations

	A Framework for Function Synthesis
	Contributions of this Dissertation

	The Protocol Completion Problem
	Objective
	Formalization and Notation
	Types
	Function Symbols
	Messages
	Extended State Machines
	Executions
	Composition of esms and esm-sks
	Symmetry and Symmetric Types
	Requirements and Specifications

	Problem Statement

	A Symbolic Strategy via Parametrized Transitions
	A Simplified, Finite Version of the Problem
	The Parameterized Symbolic Transition System
	Construction of the ltl Tester
	The Symbolic Synthesis Algorithm
	Correctness

	Evaluating the Symbolic Algorithm
	Applying the Symbolic Algorithm to Complete the VI Protocol
	Insights from Experimenting with the Symbolic Algorithm

	Road-map for the Rest of the Dissertation

	transit: Specifying Protocols with Concolic Snippets
	Overview of transit
	Concolic Snippets and Programming with transit
	Using Snippets in transit

	Expression Inference
	Correctness of SynthForPoints
	Constraints for Update Expressions
	Constraints for Guard Expressions
	Evaluation of the Expression Inference Algorithms

	Experimental Evaluation of transit
	Case Study A: Non-blocking MSI
	Case Study B: From MSI to MESI
	Case Study C: The SGI-Origin Protocol
	Discussion and Limitations


	SyGuS
	Correctness Specification
	Set of Candidate Expressions
	The Problem Definition
	Comparison with other Meta-synthesis Frameworks
	sketch and Rosette
	FlashMeta


	Enumerative Strategies for SyGuS Solvers
	esolver: An Enumerative SyGuS Solver
	Capabilities and Limitations of esolver
	Separable Specifications
	Black Box and White Box Algorithms
	A Comparison of White Box and Black Box Algorithms

	Combining Enumeration with Unification
	Decision Trees
	Program Synthesis using Decision Trees
	Putting it all Together
	Evaluation of eusolver


	Synthesis of Finite-state Protocols from Scenarios and Specifications
	Overview of Finite-state Protocol Synthesis
	Scenarios to fsm-sks
	Completion of fsm-sks
	State Coverage
	Analysis of Counterexample Traces
	Complexity of the fsm-sk Completion Problem

	Experimental Evaluation
	Alternating-bit Protocol
	The VI Cache Coherence Protocol
	The Consensus Protocol
	Discussion


	Completion of Distributed Protocols with Symmetry
	Overview of Symmetric Protocol Completion
	Solving the Symmetric Protocol Completion Problem
	Initial Constraints
	Analyzing Counterexample Traces
	Heuristics and Optimizations

	Model Checking
	Architecture of kinara
	Construction of the Annotated Quotient Structure
	Construction of the Annotated Product Structure
	Checking for a Fair, Accepting Cycle

	Experimental Evaluation
	Peterson's Mutual Exclusion Algorithm
	Self Stabilizing Systems
	Cache Coherence Protocol

	Summary of Experimental Results
	Discussion


	Related Work
	Classical Reactive Synthesis Techniques
	Synthesis from Partial or Incomplete Descriptions
	Synthesis from Sequence Charts
	Straight-line and Recursive Program Synthesis

	Conclusions
	Summary of the Dissertation
	Themes Explored in this Dissertation
	Interplay between Programmer Involvement and Scalability
	Use of Alternative Techniques to Specify Intent

	Avenues for Future Work
	Reflections on Verification and Program Synthesis


